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Preface

In this volume we present the contributions for the 18th European Conference
on Genetic Programming (EuroGP 2005). The conference took place from 30
March to 1 April in Lausanne, Switzerland. EuroGP is a well-established confer-
ence and the only one exclusively devoted to genetic programming. All previous
proceedings were published by Springer in the LNCS series. From the outset,
EuroGP has been co-located with the EvoWorkshops focusing on applications of
evolutionary computation. Since 2004, EvoCOP, the conference on evolutionary
combinatorial optimization, has also been co-located with EuroGP, making this
year’s combined events one of the largest dedicated to evolutionary computation
in Europe.

Genetic programming (GP) is evolutionary computation that solves complex
problems or tasks by evolving and adapting a population of computer programs,
using Darwinian evolution and Mendelian genetics as its sources of inspiration.
Some of the 34 papers included in these proceedings address foundational and
theoretical issues and there is also a wide variety of papers dealing with different
application areas, such as computer science, engineering, language processing,
biology and computational design, demonstrating that GP is a powerful and
practical problem-solving paradigm.

A rigorous, double-blind, peer-review selection mechanism was applied to 64
submitted papers. This resulted in the acceptance of 20 plenary talks and 14
poster presentations. Each paper was reviewed by three or four members of the
international Programme Committee who were selected as fairly as possible by
matching a reviewer’s particular interests and special expertise to the topics
covered by the paper. The results of this process are reflected in the quality of
the contributions published within this volume. This year the overall acceptance
rate for talks and poster presentations was 53%.

We would like to express our sincere gratitude to the two internationally
renowned invited speakers who gave keynote talks at the conference: Prof.
Matteo Fischetti of the University of Padova, Italy and Prof. Alberto Piazza
from the University of Torino.

The success of any conference results from the input of many people, to whom
we would like to express our appreciation. Firstly, we would like to thank the
members of the Programme Committee for their attentiveness, perseverance and
willingness to provide high-quality reviews. The local team
(Mario Giacobini, Leslie Luthi, Denis Rochat and Leonardo Vanneschi), headed
by Prof. Marco Tomassini, must also be thanked: the smooth development
of the conference has been their feat. Finally, we would also like to thank
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Jennifer Willies for her continuous efforts and support, as well as for her valuable
and professional help with all the organizational and logistic aspects of organizing
the event.

April 2005 Maarten Keijzer
Andrea Tettamanzi

Pierre Collet
Jano van Hemert
Marco Tomassini
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An Algorithmic Chemistry for
Genetic Programming

Christian W.G. Lasarczyk1 and Wolfgang Banzhaf 2,�

1 Department of Computer Science, University of Dortmund,
D-44221 Dortmund, Germany

christian.lasarczyk@uni-dortmund.de
2 Department of Computer Science, Memorial University of Newfoundland,

St. John’s, NL, A1B 3X5, Canada
banzhaf@cs.mun.ca

Abstract. Genetic Programming has been slow at realizing other pro-
gramming paradigms than conventional, deterministic, sequential von-
Neumann type algorithms. In this contribution we discuss a new method
of execution of programs introduced recently: Algorithmic Chemistries.
Therein, register machine instructions are executed in a non–determinis-
tic order, following a probability distribution. Program behavior is thus
highly dependent on frequency of instructions and connectivity between
registers. Here we demonstrate the performance of GP on evolving solu-
tions to a parity problem in a system of this type.

1 Introduction

Representations in genetic programming encode functionality both explicitly by
choosing from a set of operations and implicitly by choosing a position within
the genome. While it is “easy” to inherit the explicitly encoded portion of func-
tionality, variable genome length leads to difficulties in inheritance of implicitly
encoded functionality.

In this contribution we present a different way of looking at transformations
from input to output that does not require a prescribed sequence of computa-
tional steps and therefore no implicitly coded functionality. Instead, the elements
of the transformation, which in our case are single instructions from a multiset
I = {I1, I2, I3, I2, I3, I1, . . .} are drawn in a random order to produce a trans-
formation result. In this way we dissolve the explicit sequential order usually
associated with an algorithm for our programs.

A program in this sense is thus not a sequence of instructions but rather an
assemblage of instructions that can be executed in arbitrary order. By randomly

� The authors gratefully acknowledge support from a grant of the Deutsche For-
schungsgemeinschaft DFG (German Research Foundation) to W.B. under Ba
1042/7–3.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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choosing one instruction at a time, the program proceeds through its transfor-
mations until a predetermined number of instructions has been executed. It is
therfore more akin to a chemical system with data as educts and products, and
operations as reactions than to an ”orderly” execution of code.

Programs of this type can be seen as artificial chemistries, where instructions
interact with each other (by taking the transformation results from one instruc-
tion and feeding them into another). Different multisets can be considered dif-
ferent programs, whereas different passes through a multiset can be considered
different behavioral variants of a single program.

Because instructions are drawn randomly in the execution of the program,
it is really the concentration of instructions that matters most. It is thus ex-
pected that “programming” of such a system requires the proper concentration
of instructions, while an explicit sequencing is not required.

At first, this kind of repeated execution of instructions seems to be a waste of
computational power. While it is always possible to transform a snapshot1 of an
individual into a linear program, hardware centered improvements of execution
speed are imaginable, too. E.g., a huge number of processors could execute the
same multiset of instructions in parallel. In the extreme case of the number
of processors equal to the number of instructions running time is reduced to
a minimum predetermined by depth of data flow. Specialized multiprocessor
systems, such as the wavescalar–architecture[1, 2], hold potential to achieve this
speed up using less processors.

Due to the stochastic nature of results, it might be advisable to execute a
program multiple times before a conclusion is drawn about its ”real” output. In
this way, it is again the concentration of output results that matters. Therefore,
a number of n passes through the program should be taken before any reliable
conclusion about its result can be drawn. Reliability in this sense would be
in the eye of the beholder. Should results turn out to be not reliable enough,
simply increasing n would help to narrow down the uncertainty. Thus the method
is perfectly scalable, with more computational power thrown at the problem
achieving more accurate results.

We believe that, despite the admitted inefficiency of our approach in the
small, it might well beat sequential or synchronized computing at large, if we
imagine tens of thousands or millions of processors at work.

Algorithmic Chemistries were considered earlier in the work of Fontana [3]. In
our contribution we use the term as an umbrella term for those kinds of artificial
chemistries [4] that aim at algorithms. As opposed to terms like randomized or
probabilistic algorithms, in which a certain degree of stochasticity is introduced
explicitely, our algorithms have an implicit type of stochasticity. Executing the
sequence of instructions every time in a different order has the potential of
producing highly unpredictable results.

It will turn out, however, that even though the resulting computation is un-
predictable in principle, evolution will favor those multisets of instructions that

1 Ambiguousness starts, if different instructions share the same target.
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turn out to produce approximately correct results after execution. This feature of
approximating the wished-for results is a consequence of the evolutionary forces
of mutation, recombination and selection, and will have nothing to do with the
actual order in which instructions are being executed. Irrespective of how many
processors would work on the multiset, the results of the computation would
tend to fall into the same band of approximation. We submit, therefore, that
methods like this can be very useful in parallel and distributed environments.

Following previous work on Artificial Chemistries (see, for example [5, 6, 7, 8]),
[9] introduces a very general analogy between chemical reaction and algorithmic
computation, arguing that concentrations of results would be important. [10] was
the first step in this new direction. Here we want to deepen our understanding
of the resulting system by studying the GP task of even-parity.

2 Algorithmic Chemistry

On executing a sequence of instructions using linear GP[11], each point in exe-
cution time is assigned to exactly one instruction, which is executed at that very
moment. This principle is even the same, if instructions are stored in a tree like
data structure (e.g. Tree–GP[12]).

Applying Tree–GP, functional dependence of instructions is related to their
distance within the tree. Subtrees possess sub–functionality, an edge carries an
implicit specification for the subtree it connects to the tree. This specification has
to be satisfied during recombination. Using linear GP, functional dependence is
determined by both, distance within the genome and source and target registers
used by instructions. Therefore successful recombination has to consider both.

2.1 GP to AC — A Gradual Transition

Here we shall use 3–address machine instructions. The genotype of an individual
is a list of those instructions. Each instruction consists of an operation, a desti-
nation register, and two source registers2. Initially, individuals are produced by
randomly choosing instructions. As is usual, we employ a set of fitness cases in
order to evaluate (and subsequently select) individuals.

A time–dependent probability distribution determines the sequence of in-
structions. Linear GP uses a discrete distribution:

Pt(X = xi) =
{

1, if i = t
0, else , t, i ∈ 1, 2, . . . , n. (1)

Position in memory is denoted by xi, and the individual consists of n instruc-
tions. Starting at t = 1 exactly one instruction gets executed at each moment
in time, followed by the next instruction in memory until at t = n all instruc-
tions got executed in exactly the same order as they appear in memory. This
is shown on left side of Fig. 1. Thus, the location in memory space determines

2 Operations, which require only one source register, simply ignore the second register.
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R3=R1-R1

R1=R2-R4

R4=R0+R1

R2=R2/R6

R7=R3*R1

R1=R2+R4

Memory Order

R3=R1-R1

R1=R2-R4

R4=R0+R1

R2=R2/R6

R7=R3*R1

R1=R2+R4

Execution Order

R1=R2-R4

R3=R1-R1

R4=R0+R1

R1=R2+R4

R1=R2+R4

R7=R3*R1

Execution Order

x

t

Pt(x)Pt(x)

t

x

Fig. 1. Execution of an individual. Transition from memory to execution order is
determined by a time dependent distribution function. Left side shows transition using
distribution function of Eq. 1, emulating linear GP. On right side transition occurs by
using a normal distribution. Different gray tones of distribution functions represent
different points in time

the particular sequence of instructions. Classically, this is realized by the pro-
gram counter. Each instruction is executed, with resulting data stored in its
destination register.

If we use a distribution to access instructions as described above, we come to
a new class of algorithms by changing this distribution. On the right side of Fig. 1
shows a different execution order result from using a Gaussian distribution. If the
standard deviation σ is increased the influence of time on instruction selection
decreases. In the extreme case σ → ∞ a uniform distribution results and all
instructions have the same probability to be drawn at any moment. This we call
an Algorithmic Chemistry.

Using a uniform distribution, behavior of a program during execution will
differ from instance to instance. There is no guarantee that an instruction is ex-
ecuted, nor is it guaranteed that this happens in a definite order or frequency. If,
however, an instruction is more frequent in the multi-set, then its execution will
be more probable. Similarly, if it should be advantageous to keep independence
between data paths, the corresponding registers should be different in such a
way that the instructions are not connecting to each other. Both features would
be expected to be subject to evolutionary forces.

As shown in Fig. 2, also 1–Point–Crossover could be described, using time
depended distributions. While the first part of an offspring is formed by instruc-
tions drawn from first parent during time interval 1 ≤ t ≤ c1(≤ n1), the second
part is drawn from second parent during time interval (1 ≤)c2 ≤ t ≤ n2.

Though the instructions inherited from each of the parents are located in
contiguous memory locations, the actual sequence of the execution is not de-
termined by that order once we use a distribution to access instructions. The
probability that a particular instruction is copied into an offspring again de-
pends on the frequency of that instruction in the parent. Inheritance therefore
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Pt(x)

t

x

t = c1

Pt(x)

t x

t = c2

R1=R2-R4

R1=R2+R4

R1=R2-R4

R2=R2/R6

R7=R3*R1
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Offspring

R3=R1-R1

R1=R2-R4
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Parent 1
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R1=R2-R4

R3=R1-R1

R7=R3*R1

Parent 2

Fig. 2. Recombination accesses parents instruction via the same time dependent dis-
tribution function Pt(x) used at evaluation. While we take instruction from the first
parent during time span 1 ≤ t ≤ c1, we draw instruction from the second parent dur-
ing time span c2 ≤ t ≤ n2. In contrast to the depict situation Pt(x) is the same for
accessing both parents instructions

is inheritance of frequencies of instructions, rather than of particular sequences
of instructions.

Estimation of Distribution Algorithms (EDAs). Estimation of Distribu-
tion Algorithms[13] are a relatively new class of approaches to evolutionary com-
putation. These population based algorithms generate offsprings by two steps,
omitting crossover and mutation. At first, they estimate the probability distri-
bution of a selected subset of the current population, and subsequently they
sample a new population from this distribution. We can think of an Algorithmic
Chemistries as an implicit description of an instruction distribution by storing
a set of samples from this distribution. Recombination is similar to creating a
new common distribution based on two of the selected individuals and sampling
an offspring from it. While this kind of sampling is not able to create something
new, mutation is still needed.

2.2 Algorithmic Chemistry in Detail

Having derived execution, utilizing a 3–address–machine, and crossover of indi-
viduals on Algorithmic Chemistry for Genetic Programming(ACGP) from linear
GP, we explain further details in this section, including additional information
on crossover and evaluation.

Registers. We distinguish between three different kinds of registers:

– connection registers
– input registers
– registers containing constant values
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While instructions could read from all of them, and thus can use them as a
source register, they can just write to connection registers. Therefore these are
the only valid targets to store instruction results. Information flows among them
in the course of computation. The number of connection registers could be set
as an evolution parameter. Values in connection registers are set to zero at
the beginning of an evaluation. Each input register contains data of a single
fitness case at the beginning of execution, where the number of these registers is
determined by the problem tackled. The third type of registers contain constant
values evolved during evolution. The choice of a result register out of connection
registers is done by evolution.

More About Crossover and Evaluation. Parents are chosen randomly for
each offspring. Crossover rate assigns the proportion of offspring created by
recombination, the rest of offsprings is created by reproductive cloning. In both
cases mutation is applied afterwards. During crossover constant register values
will be copied with equal probability from each parent, as is done for the choice
of the result register if necessary.

The number of executed instructions on linear GP and Tree–GP is limited by
the number of instructions contained in an individual’s genome. As described in
Sec. 1 an instructions in an Algorithmic Chemistry can be executed successfully
– in fitness improving sense – if all required sources contain correct inputs.
Therefore, it could be reasonable to increase the upper limit on execution and
cycle (Pn+t = Pt) through individuals more than once. In the case of a constant
uniform distribution, as used by the Algorithmic Chemistry presented here, this
means that we could execute available instructions multiple times by drawing
them randomly. The number of cycles, is an additional evolution parameter.

Because evaluating an individual is a stochastic process, it could be useful
to evaluate individuals more than once and combine the results to get a single
fitness value. We will discuss this in detail later.

Initialization and Mutation. Initialization and mutation of an individual
are the same for both the ACGP and usual linear GP. Mutation changes sin-
gle instructions by changing operation, target register and the source registers
according to a prescribed probability. Register values are mutated by using a
Gaussian with mean at present value and standard deviation 1.

Selection. We use a (μ, λ)–strategy. In doing so a set of μ parents produce λ
offspring first. The λ best individuals of these offspring form the set of next
generation’s parents.

3 Results and Outlook

Since in [10] we already discussed an approximation and a real-world classifica-
tion problem, we now evolve a Boolean function using Genetic Programming of
Algorithmic Chemistries.
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3.1 Even–Parity Problem

Boolean problems are used as popular benchmark problems in GP. The even-
parity problem, widely discussed in [12], tries to generate the value of a bit, so
that with an input of three external bits, even parity is provided. The individuals
can use four logical operations {AND, OR, NAND, NOR}. The cost for random
search has been discussed in [14].

ACGP uses real–valued registers. For boolean operations, > 0 values will be
mapped to true, ≤ 0 values to false. The fitness function corresponds to the
fraction of fitness cases an individual could not generate even parity for. The
solution hoped for is to have a fitness of zero.

3.2 ACGP Settings

We do non claim, that we use optimized settings. Nevertheless we think it is
important to describe the amount of optimization done so far and describe our
settings.

To chose an appropriate setting we create a space filling latin hypercube
design with 50 runs on a reduced subspace of our parameter space. Roughly
speaking this means, that we divide each parameter into 50 evenly spaced levels3

and then choose 50 points in parameter space maximizing minimum distance
between points considering theses levels.

Table 1. ACGP settings and ranges of our space filling design

design range
parameter setting min max

offsprings 450 200 500
crossover rate 0.45 0.0 0.6
mutation rate 0.01 0.0 0.05
initial length 50 10 50
maximal length 150 300 500

cycles 3.5 1 5
connection register 40 30 60

parents 100
evaluations per ind. (m) 1,2,4,8,16 8
evolved constants 2

For each design point we start four runs, executing 1010 instructions each.
Influenced by those runs showing good average test performance we choose our
setting. Table 1 shows ranges of considered parameter subspace and finally se-
lected settings.

3 We even do so for integers and round afterwards.
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Fig. 3. Fitness distribution of a single initial individual using different training set
sizes. These training sets are generated by multiplication of original set containing
8 fitness cases m times. As this is an individual of initial population mean value is
expected to be 0.5, standard deviations of noise are σm=1 = 0.163, σm=4 = 0.083 and
σm=16 = 0.041

3.3 Stochastic Noise

During the observation of the even–parity problem a difficulty has occurred,
that is unknown for other GP variants: Originating from the small training set
of only 8 fitness cases the stochastic noise gains in influence. Through the non–
deterministic order of execution of instructions, a multiple execution of a single
individual can lead to different results. Especially at the beginning of evolution,
while instructions of a chemistry are purely random, and different instructions
share the same target register.

To reduce this noise we initially use the concept of repeated evaluation. To
do this, we not only execute the algorithmic chemistry of the individual once
on the training set of 8 fitness cases, but m times. Accordingly, with m = 2
the fitness corresponds to the fraction of 16 fitness cases that did not generate
even parity, while there are still just 8 different fitness cases. As a side effect,
the resolution of the fitness calculation increases. Instead of 8 different values
for m = 1 resulting in a 0.125 margin distance, an m = 4 approach results in 32
values with a 0.03125 margin distance.

Figure 3 displays the histograms of the fitness values from 10000 analyses
of an individual of the initial population using differently sized sets as basis of
valuation. In addition to the higher resolution, reduced standard deviation can
be observed.

Each increase on size of training set reduces the number of generations for
an unchanged number of instructions allowed to be executed. In our system the
number of executed instructions serves as a measure of time, each run is allowed
to execute 1010 instructions.

Figure 4 reveals different fitness development for m ∈ {1, 2, 4, 8, 16}, averaged
over 100 runs. For evaluation during the training phase, a corresponding number
of fitness cases was used. A validation was performed in regular intervals, choos-
ing the best individual based on 128 fitness cases. For testing purposes, fitness
is compared to this larger number of fitness cases afterwards.
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(c) 32 fitnesscases (m=4)
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(d) 64 fitnesscases (m=8)
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(e) 128 fitnesscases (m=16)
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Fig. 4. Using different training set sizes we show fitness of best individual, mean
population fitness and fitness on testing set of population’s best individual on validation
set averaged over 100 runs. The chart in bottom right corner is for direct comparison
of achieved testing set fitness
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NXOR / =

NXOR / =

input

output

Fig. 5. Circuit of a solution found using Algorithmic Chemistries

The smaller the size of training set, the better the best individual of a popu-
lation looks on average. Assuming, that the noise for all initial individuals equals
that of figure 3, it easily becomes obvious, that among 100 observed individuals
one might be chosen whose noise leads to a good fitness. This could prove prob-
lematic for evolution, because this selection is not founded and does not hold out
against further evaluation. Also, in the next generation, offspring of individuals
selected this way might underachieve. This leads to early stagnation among runs
with a small training set. For instance, if m = 1 (original training set size) most
runs do not improve much after initialization and good runs are a very rare event
(cf. Fig.4(a) and solid line in Fig.4(f)). Even worse, these runs can pass most
generation tests, because using the same individual m = 1 requires half as much
instruction executions – which are limited – as m = 2.

Things get better for m = 2, Fig.4(b). While evolutionary improvement take
place slowly, these Algorithmic Chemistries continue to evolve. Fitness of the
best individual, however, is on average inferior to the case m = 1, though more
realistic. This trend continues in Fig.4(c-e) with m ∈ 4, 8, 16. Here we can also
observe that testing fitness converges to the mean population fitness, which is
an indication that effective evolutionary progress is more strongly coupled with
population dynamics.

While Algorithmic Chemistries suffer from noise they introduced by non–
deterministic instruction execution, this problem can be handled by increasing
training set size: By duplicating fitness cases, as done here, noise can be reduced.
This reduction in noise, however, comes with an increase in computational power
demand. We expect noise reduction in Algorithmic Chemistries to be an impor-
tant topic for further investigations.

3.4 A Glance at a Solution

Because the data flow of this individual is “nearly unique”, it is easy to extract
the corresponding circuit, as shown in Fig.5. Here “nearly unique” means, that
there are for one connection register two different instructions using it as their
target. Because data flow in Algorithmic Chemistries via connection registers,
this flow can be symbolized on circuits though conductors. “Nearly unique” con-
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ductors are drawn using gray color. Missing uniqueness is caused by a functional
intron like this:

r27 = r27 AND true

The Boolean value true resides in a constant register, and it is obvious that
register r27 is not changed through execution. The evolved solution presented
here consists of two NXOR–gates. These gates test for equivalence and return
‘true’ if their inputs are equal.

3.5 Outlook

While using additional cases to evaluate an individual’s fitness is able to reduce
noise, enlarging a training set is computationally expensive. In fact, applying a
training set m times only reduces noise by

√
m. In the future, therefore, sequen-

tial sampling techniques [15] shall be used to compare the fitness of individuals.
This technique does not fix the number of fitness cases in advance, but ensures
a desired level of confidence by treating fitness cases one at a time.

In Sec.3.2 we used a very simple approach to choose settings for ACGP from
parameter space. In further work we plan to use methodologies described in
[16, 17] useful to analyze and optimize evolutionary algorithms and other search
heuristics. Beside an improved system performance we hope for further insights
in behavior of algorithmic chemistries.

In this study on our Algorithmic Chemistries for Genetic Programming we
considered only uniform distributions of instruction choice. However, other dis-
tributions are possible as well. A uniform distribution is, however, the most
extreme case, since it ignores order completely when drawing instructions from
an equal distribution. By using a normal distribution, we plan to investigate the
algorithmic space between linear GP and ACGP.

As mentioned before, there are already some similarities of EDAs and the
present approach. By mixing all selected Algorithmic Chemistries (creating a
common multi–set of instructions) and drawing new offspring from this “common
distribution” we can go one further step in the direction of EDAs.
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Abstract. Classical methods for Inductive Concept Learning (ICL) rely
mostly on using specific search strategies, such as hill climbing and in-
verse resolution. These strategies have a great exploitation power, but
run the risk of being incapable of escaping from local optima. An al-
ternative approach to ICL is represented by Evolutionary Algorithms
(EAs). EAs have a great exploration power, thus they have the capabil-
ity of escaping from local optima, but their exploitation power is rather
poor. These observations suggest that the two approaches are applicable
to partly complementary classes of learning problems. More important,
they indicate that a system incorporating features from both approaches
could benefit from the complementary qualities of the approaches. In
this paper we experimentally validate this statement. To this end, we
incorporate different search strategies in a framework based on EAs for
ICL. Results of experiments show that incorporating standard search
strategies helps the EA in achieving better results.

1 Introduction

Learning concepts from examples can be viewed as a search problem in the
space of all possible hypotheses [1]. Given a description language used to express
possible hypotheses, a background knowledge, a set of positive examples, and a
set of negative examples, one has to find a hypothesis which covers all positive
examples and none of the negative ones (cf. [2]). This problem is NP-hard even
if the language to represent hypotheses is propositional logic.

We are interested in learning concepts expressed in first–order formulas con-
taining variables. In particular we are interested in knowledge represented by a
fragment of first–order logic, called Horn clauses that do not contain negative lit-
erals nor function symbols. This knowledge can be directly used in programming
languages based on logic programming, e.g., Prolog. When the description lan-
guage used is first–order logic, we refer to ICL as Inductive Logic Programming
(ILP).

The approach used in the majority of first–order based learning systems,
e.g., FOIL [3] and Progol [4], is to use specific search strategies, like the general-
to-specific (hill climbing) search [3] and the inverse resolution mechanism [5].

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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However, the greedy selection strategies adopted for reducing the computational
effort render these techniques often incapable of escaping from local optima.

An alternative approach based on evolutionary algorithms (EAs) can be used
for ILP. This approach is motivated by two major characteristics of EAs: their
good exploration power, that gives them the possibility of escaping from local
optima, and their ability to cope well when there is interaction among argu-
ments and when arguments are of different type. However, the use of stochastic
variation operators is often responsible for the rather poor performance of EAs
on learning tasks which are easy to tackle by algorithms that use specific search
strategies. Examples of EAs for ILP are REGAL [6], G-Net [7], DOGMA [8],
SIA01 [9] and GLPS [10].

The above observations suggest that the two approaches are applicable to
partly complementary classes of learning problems. More important, they indi-
cate that a system incorporating features from both approaches would benefit
from the complementary qualities of the approaches. In fact, EAs are charac-
terized by good exploration qualities, but by rather poor exploitation qualities.
On the other hand standard ILP techniques have good exploitation quality but
have less exploration power.

This motivates us to investigate a framework based on EAs for ILP that
incorporates effective search strategies, like those used in FOIL or Progol.

To this aim, we incorporated knowledge in the evolutionary system ECL [11,
12]. In particular knowledge is used in ECL by means of the selection operator,
greedy mutation operators and an optimization phase that follows mutation.

In this paper we want to experimentally assess the effectiveness of incorpo-
rating knowledge in ECL by means of the mutation operators and of an opti-
mization phase. Results of experiments show that the use of greedy mutation
operator and of an optimization phase that follows the mutation is helpful in
helping the system achieving better results. This paper is structured in the fol-
lowing way. In section 2 we give a description of ECL. In particular we describe
in detail the mutation operators used and the optimization phase. In section 3
we present and discuss the results of the experiments. Finally, in section 4 we
give some conclusions.

2 ECL

A detailed description of ECL can be found in [11]. Here we will give a general
explanation of the main features used in the algorithm. ECL is a hybrid EA.
ECL iteratively builds a Final population as the union of various Population
evolved with an EA. At each execution of the EA, a part of the background
knowledge is chosen by means of a simple stochastic sampling mechanism. This
partial background knowledge will be used for building and evaluating individ-
uals inside each iteration of the algorithm. A Population is evolved by the
repeated application of selection, mutation and optimization. At each genera-
tion n individuals are selected. An individual of the population is chosen using
a slight modification, introduced in [13] and extensively validated in [14], of
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the so-called Universal Suffrage (US) selection operator [6]. This operator works
in two steps: first, a positive example is selected by a mechanism that favors
“harder” examples, that is, covered by few clauses. In order to determine the
“hardness” of an example, a weight is assigned to each example, and is ad-
journed at every generation. The weight depends on the number of individuals
covering the example. This is different from the standard US selection operator,
where examples are randomly chosen. Next, a roulette wheel is performed on
the individuals of the actual Population covering that example. If the selected
example is not covered by any individual (for instance when the population is
empty) then a new clause is created as follows. The example becomes the head
of the clause, and suitable elements of the (partial) background knowledge BK
having arguments in common with those of the example are added to the body
of the emerging clause. The use of the variant of the US operator is motivated
by the fact that the use of greedy mutation operators and of the optimization
phase may cause the system to converge to some local optima, so maintaining a
good diversity in the population becomes an important factor. As in most ILP
systems, a maximum number of body atoms is allowed, which is specified by a
user defined parameter lc.

Each individual undergoes a mutation and an optimization phase. The mu-
tation consists in the application of one of the four generalization/specialization
operators. A clause can be generalized either by deleting a predicate from its
body or by turning a constant into a variable. With the dual operations a clause
can be specialized. After that an individual has been mutated, the optimiza-
tion phase is performed. Mutation operators and the optimization phase are
described in the next section. The system does not make use of any crossover
operator. Experiments with a simple crossover operator, which uniformly swaps
atoms of the body of two rules, have been conducted. However the obtained re-
sults did not justify its use. The so modified individuals are then inserted in the
population. If the population is not full then the individuals are simply inserted.
If the population has reached its maximum size, then n tournaments are made
among the individuals in the population and the resulting n worst individuals
are substituted by the new individuals.

At the end of the run a solution is extracted from the final population. To
this end, in [13] a fast heuristic for solving weighted set covering problems was
used, but it presented problems with the precision of the extracted solution.
For this reason, in the version of ECL used in this paper, another procedure
based on precision of individuals is used. The procedure builds a solution from
the rules present in the population that is as accurate as possible, by adding
each time the most precise rule in the population to the emerging solution, until
its accuracy does not decrease. The fitness of an individual x is given by the
inverse of its accuracy: fitness(x) = 1

Acc(x) = P+N
posx+(N−nx) . In the formula P

and N are respectively the total number of positive and negative examples in the
training set, while px and nx are the number of positive and negative examples
covered by the individual x. We take the inverse of the accuracy, because ECL
was originally designed to minimize a fitness function.
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2.1 Mutation and Optimization

For moving in the hypothesis space ECL makes use of four mutation operators,
and takes advantage of the general-to-specific order of the hypothesis space.
In fact, two mutation operators are used for generalizing clauses, and two for
specializing. Here we use the concept of generality normally used in ICL: a rule
r1 is more general of another rule r2 if the examples covered by r2 are also
covered by r1. A clause can be then generalized by either deleting an atom from
its body (the atom is deactivated) or by turning a constant into a variable. With
the inverse operations a clause can be specialized.

These mutation operators do not act completely at random, but consider a
number of mutation possibilities and among these possibilities the best one is
applied. The number of mutation possibilities considered are determined by the
values of four parameters N1, . . . , N4.

In order to determine which mutation possibility is the best, a gain function
is used. When applied to clause C and mutation operator τ , the gain function
yields the difference between the clause fitness before and after the application
of τ : gain(C, τ) = f(C) − f(τ(C)). The four operators are defined below.

Atom Deletion. Consider the set Atm of N1 atoms of the body of C randomly
chosen. If the number of atoms in the body of C is less than N1 then Atm contains
all the atoms in the body of C. For each A in Atm, compute gain(C,−A), the
gain of C when A is deleted from C.

Choose an atom A yielding the highest gain gain(C,−A) (ties are randomly
broken), and generalize C by deleting A from its body.

Insert the deleted atom A in a list DC associated with C containing atoms
which are deactivated. Atoms from this list may be added to the clause (acti-
vated) during the evolutionary process by means of a specialization operator.

Constant into Variable. Consider the set V ar of variables present in C plus a
new variable. Consider also the set Con consisting of N2 constants of C randomly
chosen. If the number of constants of C is less than N2 then Con consists of all
the constants of C.

For each a in Con and each X in V ar, compute gain(C, {a/X}), the gain of
C when all occurrences of a are replaced by X.

Choose a substitution {a/X} yielding the highest gain (ties are randomly
broken), and generalize C by applying {a/X}.

Atom Addition. Consider the set Atm consisting of N3 atoms of BC (list
built at initialization time) and of N3 atoms of DC , all randomly chosen. If BC

contains less than N3 atoms, then Atm contains all the atoms of BC . The same
holds for DC .

For each A in Atm compute gain(C,+A), the gain of C when A is added to
the body of C.

Choose an atom A yielding the highest gain gain(C,+A) (ties are randomly
broken), and specialize C by adding A to its body.

Remove A from its original list (BC or DC).
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Variable into Constant. Consider the set Con consisting of N4 constants (of
the problem language) randomly chosen, and a variable X of C randomly chosen.
If the constants of the problem language are less than N4, then Con contains all
the available constants.

For each a in Con, compute gain(C, {X/a}), the gain of C when all occur-
rences of X are replaced by a.

Choose a substitution {X/a} yielding the highest gain (ties are randomly
broken), and specialize C by replacing all occurrences of X with a.

Optimization(ϕ, max opt steps)
opt steps = 1, cont = true
while (opt steps < max opt steps ) ∧ (cont)

ϕ′ = mutate(ϕ)
evaluate(ϕ′)
opt steps = opt steps + 1
if fitness(ϕ) < fitness(ϕ′)

cont = false
else

cont = true
ϕ = ϕ′

return ϕ

Fig. 1. Optimization function used after mutation. The procedure takes as input an
individual ϕ and a maximum number of optimization steps, max opt steps

The optimization phase, performed after an individual has been mutated, is
shown in figure 1. Optimization consists of a repeated application of the greedy
operators to the selected individual, until either its fitness does not increase or a
maximum number of iterations (in figure denoted as max opt steps) is reached.
The default value of max opt steps is 10, and can be modified by setting a
relative parameter. If the procedure ends because an application of a mutation
operator negatively affected the fitness of the individual being optimized then
the last mutation applied is retracted. This control, and the relative action, is
performed in the if statement of the procedure.

3 Experiments

In this section we experimentally assess the effectiveness of both incorporating
the optimization phase that follows the mutation and using the non–random
mutation operators described in section 2.1. The list of datasets and the rela-
tive parameter setting used in the experiments are shown in table 1. The last
column of the table indicates whether a dataset is relational or propositional.
The propositional datasets were taken from the UCI Machine Learning reposi-
tory [15]. The Accidents and the Congestions originates from the Traffic dataset
[16, 17], while the Mutagenesis from [18]. Originally the Accidents and the Con-
gestions datasets represented two classes in the Traffic dataset. Here we consider
the two classes as different datasets.
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Table 1. Parameter settings used in the experiments: gen is the number of generations
performed by the GA, sel is the number of individuals selected per generation, Ni,
i ∈ [1, 4], are the greediness parameters of the mutation operators, lc is the maximum
length of a clause, and pbk is the probability of selecting a BK fact. The last column
indicate whether the dataset is a relational dataset (R) or a propositional dataset (P)

Dataset pop size gen sel max iter Ni lc pbk Type
Accidents 30 10 10 1 (10,2,2,2) 8 1.0 R
Australian 50 10 15 1 (4,4,4,4) 6 0.4 P

Breast 50 5 5 1 (3,3,3,3) 5 0.6 P
Congestions 30 10 10 1 (10,2,2,2) 8 1.0 R

Crx 80 20 15 1 (4,4,4,4) 7 1.0 P
Ecochardiogram 40 8 10 10 (4,4,4,4) 4 0.7 P

German 200 10 10 2 (3,4,3,4) 6 0.4 P
Glass2 150 15 20 3 (2,8,2,9) 5 0.8 P
Heart 50 10 15 1 (4,4,4,4) 6 1.0 P

Hepatitis 50 10 10 5 (4,4,4,4) 7 0.2 P
Ionosphere 50 10 15 6 (4,8,4,8) 6 0.2 P

Mutagenesis 50 10 15 2 (4,8,2,8) 3 0.8 R
Pima-Indians 60 10 7 5 (2,5,3,5) 4 0.2 P

The parameter settings were obtained after few, in the order of 10, runs of
the system on the relative dataset. We emphasize that the parameter settings
chosen was the one which led to the best classification accuracy in the training
set, i.e., the test set was never accessed during the runs allocated for parameter
setting. We use 10-fold cross validation. Each dataset is divided in ten disjoint
sets of similar size; one of these sets is used as test set, and the union of the
remaining nine forms the training set. Then ECL is run on the training set
and the accuracy of solution found is assessed on the test set. Three runs with
different random seed are performed on each dataset.

In order to assess the effectiveness of incorporating knowledge in ECL, we
perform experiments with ECL in three settings:

ECL-GA. In this setting ECL is run with all the values of Ni set to 1 and with
no optimization phase. In this way all the mutation operators act randomly, as
in standard GA operators;

ECL-NOT. In this setting ECL is run with the values of Ni set as reported in
table 1. The optimization phase is not performed.

ECL-Opt. In this setting ECL is run with the parameters Ni set as reported in
table 1. The optimization phase is performed after mutation, with a maximum
of 10 optimization steps.

In order to perform a fair comparison, we increased the values of the param-
eter sel in ECL-GA and in ECL-NOT so that the three settings perform about
the same number of evaluations. Table 2 reports the average results obtained by
ECL in the three different settings.
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Table 2. Experiments with various setting of greediness of ECL. In ECL-GA ECL
runs as a standard GA. In ECL-NOT greedy mutation operators are used and in ECL-
Opt both greedy mutation operators and the optimization phase are used. Standard
deviation is reported between brackets

Dataset Setting Accuracy Time (s) Simplicity
ECL-GA 0.82 (0.01) 2752.16 (82.69) 35.3 (10.92)

Accidents ECL-NOT 0.88 (0.01) 3092.62 (103.72) 23.37 (9.69)
ECL-Opt 0.95 (0.02) 3395.01 (136.82) 3.55 (0.49)
ECL-GA 0.82 (0.03) 1353.02 (7.72) 14.4 (2.77)

Australian ECL-NOT 0.83 (0.03) 1444.05 (16.54) 12.30 (2.58)
ECL-Opt 0.85 (0.01) 1686.38 (144.07) 6.10 (2.18)
ECL-GA 0.92 (0.01) 173.67 (2.33) 11.30 (2.20)

Breast ECL-NOT 0.93 (0.02) 238.72 (11.52) 11.50 (2.01)
ECL-Opt 0.96 (0.02) 286.13 (37.00) 8.60 (0.41)
ECL-GA 0.91 (0.02) 2532.98 (98.43) 5.70 (1.25)

Congestions ECL-NOT 0.92 (0.02) 2983.15 (38.65) 5.46 (1.46)
ECL-Opt 0.94 (0.02) 3246.30 (138.73) 3.95 (0.35)
ECL-GA 0.84 (0.04) 1707.82 (66.47) 13.30 (3.34)

Crx ECL-NOT 0.83 (0.03) 1852.97 (54.47) 11.70 (3.13)
ECL-Opt 0.84 (0.01) 2668.00 (176.45) 4.80 (0.05)
ECL-GA 0.70 (0.03) 1245.21 (6.21) 2.50 (0.53)

Echocardiogram ECL-NOT 0.73 (0.03) 1311.95 (10.31) 2.50 (0.53)
ECL-Opt 0.74 (0.01) 1443.63 (36.62) 2.60 (0.70)
ECL-GA 0.74 (0.02) 1041.74 (19.83) 14.2 (2.20)

German ECL-NOT 0.73 (0.03) 1153.52 (11.32) 16.70 (3.09)
ECL-Opt 0.74 (0.01) 1605.75 (144.34) 11.70 (0.24)
ECL-GA 0.82 (0.04) 956.17 (2.74) 3.90 (0.99)

Glass2 ECL-NOT 0.85 (0.03) 1143.05 (21.49) 4.40 (1.51)
ECL-Opt 0.85 (0.01) 1246.00 (55.94) 4.20 (1.23)
ECL-GA 0.77 (0.03) 345.34 (8.40) 9.20 (1.93)

Heart ECL-NOT 0.78 (0.02) 474.51 (13.41) 7.40 (2.12)
ECL-Opt 0.80 (0.03) 436.38 (57.59) 4.20 (1.32)
ECL-GA 0.82 (0.02) 878.202 (6.31) 13.00 (1.63)

Hepatitis ECL-NOT 0.83 (0.03) 954.61 (10.34) 13.40 (1.51)
ECL-Opt 0.83 (0.02) 1056.73 (63.84) 7.60 (0.95)
ECL-GA 0.87 (0.04) 4364.59 (15.96) 25.90 (3.96)

Ionosphere ECL-NOT 0.89 (0.03) 4498.72 (13.21) 25.10 (2.72)
ECL-Opt 0.89 (0.02) 5276.83 (138.93) 12.50 (1.48)
ECL-GA 0.85 (0.03) 407.88 (4.56) 4.56 (0.73)

Mutagenesis ECL-NOT 0.87 (0.02) 470.32 (5.14) 4.70 (0.95)
ECL-Opt 0.90 (0.01) 542.88 (27.88) 7.92 (1.51)
ECL-GA 0.73 (0.03) 1031.71 (10.95) 9.70 (3.06)

Pima-Indians ECL-NOT 0.74 (0.02) 1157.64 (14.47) 9.20 (1.87)
ECL-Opt 0.76 (0.01) 1214.75 (31.86) 8.40 (1.84)

A first aim of these experiments was to assess how the incorporation of the
optimization phase and the use of greedy mutation operators affect the com-
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putational time required by the evolutionary process. From the experiments, it
emerges that the computational time required by ECL-GA and by ECL-NOT
is smaller than the time required by ECL-Opt. In particular ECL-GA is the
fastest setting. This result was expected, since in ECL-GA mutations are done
randomly and no optimization phase takes place.

The second, and main, aim of these experiments was to establish if the in-
corporation of the optimization phase and of the greedy mutation operators was
beneficial in order to improve the accuracy of the found solutions. It can be
noticed that ECL-Opt generally obtained the best accuracies. Only on the Crx
dataset ECL-GA obtained the same accuracy as the one obtained by ECL-Opt,
but with a higher standard deviation. It can also be noticed that generally ECL-
NOT obtained better results than ECL-GA. In some cases the solution found by
ECL-NOT is equal to the solution found by ECL-Opt. However neither ECL-
GA nor ECL-NOT were capable of finding solutions with higher accuracy than
the solutions found by ECL-Opt. This is evident especially for the relational
datasets. This is due to the fact that for the relational datasets it is important
to find good relations among the arguments of a clause. It is more likely to find
good relations with greedy operators and an optimization phase than using only
random operators.

It is interesting to notice that generally the solutions induced by the three
settings become simpler with the use of greedy mutation operators and with
the inclusion of the optimization phase. This is mostly due to the optimization
phase. In fact during this phase individuals are rapidly refined so that less clauses
are needed for obtaining a logic program with good accuracy. It can be seen
that only on three datasets, namely on the Echocardiogram, the Glass2 and the
Mutagenesis dataset, ECL-Opt did not find the simplest solution. Only on the
Mutagenesis dataset the difference in the simplicity of the solution is significant,
while in the other two cases the simplicity of the solutions is comparable. On
all the other datasets ECL-Opt found the simplest solution. This can be noticed
especially for the Accidents dataset where the solution found by ECL-Opt is
almost 10 times simpler than the one obtained by ECL-GA and almost 7 times
simpler than the one obtained by ECL-NOT.

In order to summarize the performance of the three settings of ECL and
the significance of the results with respect to the accuracy, we compute the
statistical paired two-tailed t-test, with confidence level of 1% and 5%. The t-
test is performed on the 30 results obtained from the 10 folds and the 3 random
seeds. For the Echocardiogram, the Glass2, the Heart and the Hepatitis datasets,
the results are not normally distributed and so the t-test cannot be performed
on these datasets. Table 3 reports the results of the t-test for the other datasets
used in this section. Using a confidence level of 1%, we can see that ECL-Opt
outperformed once ECL-GA, namely it obtained significantly better results on
the Accidents dataset. If we extend the confidence level to 5%, we have that
ECL-Opt outperforms ECL-GA on three datasets, namely the Accidents, the
Congestion and the Mutagenesis datasets. Using a 5% confidence level we have
that ECL-Opt outperforms ECL-NOT on the Accidents dataset.
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Table 3. Results of the two-tailed paired t-test for the used datasets with 1% confidence
level: each entry contains the number of datasets on which the algorithm in the row
is significantly better than the one in the column. The results of the test using 5%
confidence level are reported between brackets when they differ from those using 1%
confidence level

ECL-GA ECL-NOT ECL-Opt Total
ECL-GA – 0 0 0

ECL-NOT 0 – 0 0
ECL-Opt 1 (3) 0 (1) – 1 (4)

Total 1 (3) 0 (1) 0

The difference of performance between ECL-Opt and the other two settings
is evident on the Accidents dataset. For this reason we want to analyze the
dynamics of the three settings on this dataset. In graphs 2(a), 3(a) and 4(a),
we show the best and average fitness of the population at every generation,
computed over 10 runs of the various settings. In graphs 2(b), 3(b) and 4(b)
we report the average number of positive and negative examples covered by an

(a) Average and best fitness (b) Average coverage of individuals

Fig. 2. Graphs relative to fitness and coverage for 10 runs of ECL-GA on the Accidents
dataset

(a) Average and best fitness (b) Average coverage of individuals

Fig. 3. Graphs relative to fitness and coverage for 10 runs of ECL-NOT on the Acci-
dents dataset
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(a) Average and best fitness (b) Average coverage of individuals

Fig. 4. Graphs relative to fitness and coverage for 10 runs of ECL-Opt on the Accidents
dataset

individual in the population evolved with the three settings, computed over 10
runs. From the graphs, it can be seen that the fitness of the best individual
in the population is better if more knowledge is incorporated in ECL. It is
interesting to notice that the same does not hold for what concerns the average
fitness. In fact the average fitness is better in the population evolved with ECL-
GA than in the population evolved with ECL-NOT, and is comparable with
the average fitness of the population evolved with ECL-Opt. By looking at the
graphs relative to the coverage of each individual evolved in the three settings,
it can be noticed that individuals evolved by ECL-GA are more specific than
those evolved by ECL-Opt and by ECL-NOT. In particular individuals evolved

Table 4. Average accuracies obtained by various systems for ICL on the propositional
datasets. Standard deviation between brackets, where (x) stands for (0.0x)

Dataset ECL-Opt C4.5 HIDER* GAssist SMO
Australian 0.85 (1) 0.85 (4) 0.85 (3) 0.85 (5) 0.85 (1)

Breast 0.96 (2) 0.94 (2) 0.96 (2) 0.96 (2) 0.96 (1)
Crx 0.84 (1) 0.85 (4) 0.83 (5) 0.86 (5) 0.85 (2)

Echocardiogram 0.74 (1) 0.71 (1) 0.79 (13) 0.72 (2) 0.75 (3)
German 0.74 (1) 0.72 (4) 0.73 (4) 0.72 (2) 0.76 (1)
Glass2 0.85 (1) 0.78 (4) 0.79 (3) 0.82 (8) 0.65 (2)
Heart 0.80 (3) 0.77 (4) 0.78 (8) 0.80 (7) 0.83 (1)

Hepatitis 0.83 (2) 0.79 (4) 0.83 (2) 0.89 (8) 0.85 (2)
Ionosphere 0.89 (2) 0.89 (7) 0.89 (6) 0.93 (4) 0.88 (2)

Pima-Indians 0.76 (1) 0.73 (3) 0.74 (2) 0.74 (2) 0.76 (1)

Table 5. Average accuracy on relational datasets. Standard deviation between brackets

Dataset ECL-Opt ICL Tilde Progol
Mutagenesis 0.88 (0.01) 0.88 (0.08) 0.86 (0.03) 0.88 (0.02)

Traffic 0.93 (0.02) 0.93 (0.04) 0.94 (0.04) 0.94 (0.03)
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by ECL-Opt are much more general than those evolved by the other two settings.
This fact explains the difference in the simplicity of the solution found, which is
much higher in ECL-GA and ECL-NOT than in ECL-Opt. So, on the Accidents
dataset, incorporating more knowledge has the effect of allowing ECL-Opt to
evolve more general individuals, that have on average not better performances
on the training sets, but when used on the test sets yield better results.

Even if the focus of this paper was not to globally assess the performance
of ECL it is nevertheless interesting to briefly compare the results obtained by
ECL-Opt with those obtained by other popular propositional and ILP learners.

Tables 4 and 5 shows the results obtained by ECL-Opt and by others learner,
on the propositional and on relational datasets, respectively. In table 5 we con-
sider the whole Traffic dataset, consisting of three classes. From these tables, it
can be noticed that ECL-Opt obtains better or comparable performances with
those obtained by other state of the art learners.

4 Conclusions

In this paper we have experimentally validated the effectiveness of incorporating
knowledge by means of greedy mutation operators and an optimization phase
in the evolutionary systems ECL. The results of the experiments confirm that
including the optimization phase that follows the mutation phase and a degree
of greediness in the mutation operators is beneficial for improving the accu-
racy of the found solutions, especially for the relational datasets. The drawback
of incorporating knowledge in the evolutionary system, is represented by the
computational time, that increases with the inclusion of greediness and of the
optimization phase. The fact that including knowledge in ECL helps the system
in achieving better results, is an important result, since it confirms what theo-
rized in our motivations for this paper: a system incorporating features of both
standard EAs and of standard ICL systems can benefit from the complementary
qualities of the two approaches.
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Abstract. The three dozen or so known instances of human-competitive designs 
of antennas, mechanical systems, circuits, and controllers produced by genetic 
programming suggest the question of whether genetic programming can be 
extended to the design of complex structures from other fields. This paper 
describes how genetic programming can be used to automatically create a 
complete design for an optical lens system “from scratch”—without starting 
from a pre-existing good design and without pre-specifying the number of 
lenses, the layout of lenses, or the numerical parameters of the lenses. More 
particularly, genetic programming created an optical system that infringed a 
previous patent (the Konig patent) and improved upon another previous patent 
(the Tackaberry-Muller patent). The genetically evolved design is an example 
of a human-competitive result produced by genetic programming in the field of 
optical design. 

1 Introduction 

There are now over three dozen known instances where genetic programming has 
produced “human-competitive” designs (as defined in [7]), including the automatic 
synthesis of an X-Band Antenna for NASA's Space Technology 5 Mission [11], 
quantum computing circuits [14], a previously patented mechanical system [10], 
project schedules in civil engineering [5], previously patented controllers [8], analog 
electrical circuits patented in the 20th-century [7] and 21st-century [8], and new 
controller designs that have been granted patents [4].  

These past human-competitive results raise the question of whether genetic 
programming can be extended to the design of complex structures from other fields.  

This paper describes how genetic programming can be used to automatically create 
a complete design for an optical lens system “from scratch”—without starting from a 
pre-existing good design and without pre-specifying the number of lenses, the layout 
of lenses, or the numerical parameters of the lenses. Specifically, genetic 
programming created an optical system that infringed a patent (the Konig patent [6]) 
and improved upon another (the Tackaberry-Muller patent [15]). The genetically 
evolved design in this paper is, therefore, an example of a human-competitive result 
(as defined in [7]) produced by genetic programming in the field of optical design.  



26 S.H. Al-Sakran, J.R. Koza,  L.W. Jones 

 

Section 2 provides background on the design of optical lens systems, using the 
patented Tackaberry-Muller system [15] as an example. Section 3 discusses the issues 
involved in applying genetic programming to the design of optical systems. Section 4 
presents the results. Section 5 compares the techniques in this paper with previous 
work on automatic synthesis of complex structures. Section 6 is the conclusion.  

2 Background on the Design of Optical Lens Systems  

An optical lens system is an arrangement of refractive or reflective materials that 
manipulate light [3, 12, 13]. Optical design is more of an art than a science. As 
Warren J. Smith states in Modern Optical Engineering [13, page 393]: 

“There is no ‘direct’ method of optical design for original systems; that is, 
there is no sure procedure that will lead (without foreknowledge) from a set 
of performance specifications to a suitable design.” 

“Optical design is in great measure a systematic application of the cut-and-
try process.” 

An existing design is frequently the starting point of optical design by humans (and 
by conventional optimization software). As Smith [13, page 393] states: 

“[O]ne part of the art in optical design … consists of the choice of the point 
at which the designer begins.”  

2.1 The Konig and Tackaberry-Muller Lens System 

Figure 1 shows a four-lens system intended for use as a telescope eyepiece that was 
patented in 1958 by Tackaberry and Muller [15]. The Tackaberry-Muller lens system 
is an improved design within a subclass of the Konig lens systems patented in 1940 
[6]. The object is shown at the far left and the image is shown at the far right. 
Spherical surfaces 1 and 2 (and the glass between them) define the first lens (and 
surfaces 3 and 4, the second). Spherical surfaces 5, 6, and 7 define a doublet (i.e., two 
lenses fitting together). Light rays a, b, and c (so-called axial rays) enter the system in 
parallel at the entry pupil and converge to a single point (the focal point f) on the 
image surface at the far right. Light ray d (the so-called chief ray) runs from the point 
farthest from the axis of the object plane that is visible through the lens system (the 
field of view), to the center of the aperture stop (entry pupil here), and to the image 
surface (at the so-called image height). This system appears in Smith’s Modern 
Optical Engineering [13, page 508].  

2.2 Elements of Design of an Optical System 

A complete design for a classical optical lens system entails numerous decisions, 
including the number of lenses in the system, the layout of the lenses, choices for 
numerical parameters, and choices for non-numerical parameters.  

The layout decisions include the sequential arrangement of lenses between the 
object and the image, decisions as to whether consecutive lenses touch or are 
separated by air (or other material), the nature of the mathematical expressions 
defining the curvature of each surface (often spherical, but sometimes aspherical), and 
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the location and size of the field and aperture stops, which determine the visible field 
and the maximum illumination of the image, respectively.  
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Fig. 1. The Tackaberry-Muller lens system 

 
Table 1. Lens file for the Tackaberry-Muller lens system 

 Surface Distance Radius Material Aperture 
 OBJ 1010 1010 air  
 EP 0.88 1010 air 0.18 
 1 0.21900 –3.52361 BK7 0.62 
 2 0.07280 –1.05274 air 0.62 
 3 0.22500 –4.40723 BK7 0.62 
 4 0.01360 –1.07043 air 0.62 
 5 0.52100 1.02491 BK7 0.62 
 6 0.11800 –0.93493 SF61 0.62 
 7 0.47485 7.94281 air 0.62 
 IMS  1010   

The numerical choices required to define a lens system include the physical 
distance between each surface of each lens, the numerical coefficients for the 
mathematical expressions defining the curvature of each surface of each lens (which, 
in turn, implies whether each surface is concave, convex, or flat), and the apertures 
(semi-diameter) of each surface.  

The non-numerical choices include the type of glass (or other material) for each 
lens. Each type of glass has various properties of interest to optical designers, notably 
including the index of refraction, n (which varies by wavelength); the Abbe number, 
V; and the cost. Choices of glass are typically drawn from a standard glass catalog.  

2.3 Prescription (Lens File) for the Tackaberry-Muller Lens System 

A classical lens system is conventionally specified by a table called a prescription (or, if 
the system is being analyzed by modern-day optical simulation software, a lens file).  

Table 1 shows a prescription (slightly modified for tutorial purposes) for the 
Tackaberry-Muller lens system [15] of figure 1. Each row in the table represents a 
surface. The object appears in the first row and is labeled “OBJ.” The entry pupil 
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appears in the second row of the table and is labeled “EP.” The image appears in the 
last row and is labeled “IMS”. The other surfaces are consecutively numbered (from 1 
to 7). All entries are normalized so that the system has a focal length of 1. The system 
has a half field of view of 19.8°. The object is at infinite distance (1010).  

The distance shown in column 2 of each row of table 1 refers to the distance 
between the surface represented by that row and the surface represented by the next 
row (which, in figure 1, is the surface to the right). Similarly, the material in column 4 
refers to the material (glass, air, or other) between the surface represented by that row 
and the surface represented by the next row. Columns 3 (radius of curvature of the 
surface) and 5 (aperture) apply to the surface itself.  

Surface 1 in table 1 is located at a distance (column 2) of 0.88 from the previous 
surface (i.e., entry pupil EP) and defines the eye relief of the eyepiece. The entry in 
column 3 of –3.52361 for the radius of curvature of surface 1 indicates that surface 1 
is a sector of a sphere with a radius 3.52361. The negative sign indicates that the 
sphere’s center is located to the surface’s left. The material (column 4) located to the 
right of surface 1 is BK7 (a commercially available crown glass). The apertures for 
surfaces 1 through 7 (found in column 5) have a uniform value of 0.62 because this 
particular system is a telescope eyepiece that is encased entirely inside a cylinder.  

Surface 2 is located at distance 0.21900 from surface 1. The material to the right of 
surface 2 is air. Together, surfaces 1 and 2 define a lens of thickness 0.21900 
composed of BK7 glass with a concave left surface and a convex right surface.  

Surfaces 5, 6, and 7 together define a doublet lens. The material to the right of 
surface 5 is BK7 glass and the material to the right of surface 6 is SF61 (a 
commercially available flint glass).  

The material between surface 7 and the image surface (IMS) is air and its distance 
is 0.47485 (the back focal length).  

2.4 Analysis of an Optical System 

Once a classical optical system is specified by means of its prescription (lens file), 
many of its optical properties can be calculated by mathematically tracing the path of 
light rays of various wavelengths through the system. Ray-tracing analysis is 
extremely tedious and, nowadays, is typically performed by optical simulation 
software (e.g., OSLO, Zemax, V-Code, KOJAC). Figure 2 shows conventional curves 
for distortion (figure 2a), astigmatism (figure 2b), chromatic aberration (figure 2c), 
and spherical aberration (figure 2d) for the Tackaberry-Muller system.  
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Fig. 2. Characteristics of the Tackaberry-Muller system 
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Fig. 3. Additional characteristics of the Tackaberry-Muller system 

Figure 3 shows the on-axis ray intercept diagram (figure 3a), the partial field ray 
intercept diagram (figure 3b), and the full field ray intercept diagram (figure 3c). The 
diagram for the meridional plane is on the left, with the sagittal on the right.  

2.5 Previous Work in Optics in Genetic and Evolutionary Computation 

Genetic algorithms have been extensively used for optimizing the choices of 
parameters of optical systems having a pre-specified number of lenses and a pre-
specified layout, as listed in Jarmo Alander’s voluminous An Indexed Bibliography of 
Genetic Algorithms in Optics and Image Processing [1]. In a noteworthy paper, 
Beaulieu, Gagné, and Parizeau [2] used genetic programming to “re-engineer” the 
design of a four-lens system (produced by genetic algorithm) and thereby create an 
improvement over the best design produced by 11 human teams in a design 
competition held at the 1990 International Lens Design Conference. Their approach 
used functions that incrementally adjusted (additively or multiplicatively) the distance 
between lens surfaces, radius of curvature of lens surfaces, and stop location values. 

3 Applying Genetic Programming to Optical Design 

This section briefly describes the most important issues in applying genetic 
programming to the design of an optical lens system. A technical report with a fuller 
explanation of the preparatory steps and other details is available on the web at 
www.genetic-programming.com/techreports.html.  

3.1 Representation Scheme (Functions and Terminals) for Optical Systems 

The widely-used and well-established format for optical prescriptions (and lens files 
for optical analysis software) suggests a developmental representation for use in 
conjunction with genetic programming. In this representation, a turtle (similar to the 
turtle used in Lindenmayer systems and used to synthesize antennas using genetic 
programming [8]) starts at a specified point on the entry pupil surface (point e in 
figure 1). On each move, the turtle does three things. First, it inserts a spherical 
surface with a specified radius of curvature. Second, it inserts a specified type of 
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material (e.g., air or a type of glass) to the right of the surface. Third, it moves to the 
right by a specified distance along the system’s main axis (line b in figure 1).  

The three-argument SS (“spherical surface”) function causes the turtle to insert a 
spherical surface with specified radius and thickness and to move a specified distance.  

The two-argument PROGN2 function is a connective function that first executes 
its first argument and then executes its second argument.  

Radius and distance values are each established by a value-setting subtree 
containing a single perturbable numerical value. The type of material is established by 
a value-setting subtree containing a type of material (e.g., air or a type of glass). 

A constrained syntactic structure specifies how the functions and terminals may be 
combined in a program tree. The constrained syntactic structure enforces the use of 
one function set and terminal set for each value-setting subtree that establishes the 
numerical value for thickness and radius of curvature; another terminal set for 
establishing the type of material; and another function set for all other parts of the 
program tree.  

The object surface (OBJ), image surface (IMS) and entry pupil (EP) constitute the 
test fixture when it comes time to evaluate the behavior and characteristics of the lens 
system (analogous to the test fixtures described in [7] and [8]).  

3.2 Special Toroidal Mutation Operation for Radius of Curvature 

A flat surface can be viewed as a spherical surface with a very large radius of 
curvature. Given our aperture of 0.62 and effective focal length of 1, a radius of 
curvature of +10 or –10 both approximately represent a flat surface. That is, the space 
of curvature values is toroidal, so that seemingly distant values such as +10 and –10 
are, in fact, nearby. Therefore, our mutation operation operates in a toroidal way when 
it is applied to a terminal representing a radius of curvature.  

3.3 Special Glass Mutation 

In real-world situations, the optical designer usually does not freely choose the index 
of refraction, n, and the Abbe number, V, for a glass, but, instead, chooses one of a 
relatively small number of commercially available types of glass (such as those found 
in the Schott catalog or other standard glass catalogs). Moreover, the 199 
commercially available glasses in the Schott catalog reside in a relatively small and 
compact crescent-shaped area occupying only about 27% of the area of the rectangle 
bounded by the extreme values of n and V for the catalog, namely 1.46 < n < 2.02 and 
20 < V < 77 for the Schott catalog. Independently perturbing n and V would usually 
yield a glass lying outside the crescent-shaped area and, even if the offspring were 
inside, it would almost never correspond to a commercially available type of glass. 
Thus, it is advisable to employ a domain-specific mutation operation that permits 
mutation only to a “nearby” type of glass in the chosen catalog.  

3.4 Operator Probabilities 

The function set here is unusual in that there is only one active function (SS) and all 
of its arguments are terminals. Moreover, the glass mutation operator is unusually 
important in that a change in material simultaneously affects the refraction of light 
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rays as well as the chromatic corrective (dispersive). These considerations suggest 
performing crossover, numerical mutation, and glass mutation at 30% probability 
each, with reproduction at 9% and tree mutation at 1%. The population size was 
346,000 (500 individuals at 692 nodes of a cluster computer).  

3.5 Fitness Measure 

The fitness measure used in optical design (whether by evolutionary search, other 
types of search, or human design) is multi-objective.  

We extensively modified and augmented KOJAC (public-domain educational 
software for optical ray tracing) to create an optical simulator that we could embed 
inside our genetic programming system operating on our Beowulf cluster computer. 
KOJAC was originally authored by Olivier Scherler and is currently maintained by 
Olivier Ripoll. We also used a commercially available software package (Lambda 
Research’s OSLO) for post-run checking of final results on a single computer.  

The fitness measure begins by analyzing an axial and chief ray trace in order to 
derive aberration and paraxial coefficients (and assigns a fatally high penalty value if 
either ray trace fails). Fitness is incremented by the weighted sum of the deviations 
between the behavior of the candidate individual and the target values of various 
performance measures. In particular, fitness is incremented by the sum of 1,000 times 
each of the following aberration deviations: spherical aberration, astigmatism, 
distortion, coma, axial chromatic, lateral chromatic; 100 times the absolute deviation 
of effective focal length (EFL) from target; 100 times the absolute deviation of back 
focal length (BFL) from target (but only if it is less than target); and 25 times the 
absolute deviation of Petzval radius from target (but only if it is less than target). The 
weights were chosen to approximately equalize the influence of each of the above 
types of deviations in a manner similar to our recent work with automatic circuit 
systems involving multi-objective fitness measures [9].  

Then, a 17×17 grid is overlaid on the entry pupil (figure 4a) and a ray is shot 
through the corner defining each grid position contained inside the entry pupil.  

Figures 4b, 4c, and 4d are gray scale versions of a three-color spot diagram for the 
Tackaberry-Muller system. The rays from figure 4a are traced for each of three 
wavelengths (486, 588 and 656 nm) and projected through the system on the object 
plane. Figure 4b shows the trace from the axial point. Figure 4c shows the trace from 
the 70% of the field of view (FOV). Figure 4d shows the full FOV performance.  

Figure 4e shows the modulation transfer function performance of the Tackaberry-
Muller system in the tangential and sagittal planes of each of the FOV positions. The 
spot diagram measures the deviation resulting from the compound error of the chosen 
lens aberration contributions. An ideal diffraction limit spot size (corresponding to the 
minimum spot size that can be discernable when diffraction effects are taken into 
account) is determined for the system and the root mean square (RMS) error for the 
ray intercept deviations is calculated. Fitness is incremented by 200, 340 and 400 
times the difference between the target RMS error for the axial, 70% FOV and full 
FOV, respectively. The increasing penalty multiplier reflects the increasing difficulty 
in attaining the desired performance. The modulation transfer functions are each 
sampled at 30 increments of 10 cycles/mm across the target system and that 
modulation efficiency is defined as the target to meet.  
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Fig. 4. Fitness measure 

After an individual reaches a specified satisfactory level for all of the foregoing 
requirements, individuals are evaluated for parsimony. The parsimony penalty is the 
sum of 100 times the number of lens, 100 times the number of different types of glass 
used, the width of the lens system (its footprint), and (optionally, but not used for the 
work in this paper) the cost of the glass (found in the glass catalog).  

For the specific problem discussed herein, each candidate lens system is first 
examined to see if it is “all air” or whether a lens has a spherical radius smaller than 
the problem’s uniform aperture of 0.62. If so, the individual receives a fatally high 
penalty value of fitness. In addition, a significant (but not fatal) infeasibility penalty is 
applied if two lenses overlap (i.e., occupy the same space), if the back focal length 
(BFL) is negative (meaning the image is inside the lens system, instead of being to the 
right), or if the final surface is not air (meaning that a flat glass surface touches the 
image surface).  

4 Results 

The randomly created individuals in generation 0 exhibit a wide variety of 
pathological characteristics. For some individuals, none of the light rays from the 
object may reach the image surface. Randomly created multi-lens systems are also 
likely to refract some rays outside the eyepiece’s housing, causing vignetting.  

Many of the better individuals in generation 0 have a single positive lens with 
above-average diffraction. These individuals keep the incoming light rays within the 
system. These one-lens systems provide a toehold for later evolutionary progress.  

The best individual of generation 0 (figure 5) has a fitness of 820.4 and 
corresponds to a lens system with one positive lens (biconvex in this case) of BASF57 

Object Entry Pupil Image

a
b
c

d

1 2

 

Fig. 5. Best-of-generation individual from generation 0 
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Fig. 6. Best-of-generation individual from generation 11 
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Fig. 7. Best-of-generation individual from generation 18 
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Fig. 8. Best-of-run individual from generation 490 

glass (a flint glass). The axial rays (a, b, and c) coming in through the entry pupil are 
focused in approximately the desired range on the image surface; however, the chief 
ray, d (determining image height) lands outside the desired range.  

In generation 11, the best individual (figure 6) has two positive focusing lenses 
(using two similar materials, namely LAK31 with an n of 1.696732 and a V of 56.42 
for yellow light and LAKN22 with an n of 1.651131 and V of 55.89. The axial rays 
are focused in approximately the desired range and the chief ray, d, is inside the 
desired range on the image surface. This individual has a fitness of 483.2.  

The best individual from generation 18 (figure 7) has two new features of interest. 
First, a doublet has emerged (defined by surfaces 3, 4, and 5). Second, two distinctly 
different types of glasses are employed (LAK8 crown glass for surfaces 3 and 4 and 
LAF11A flint glass for surfaces 4 and 5). The crown glass elements are primarily 
responsible for ray shaping while the flint glass corrects aberrations. The front end 
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resembles earlier individuals in that it is a positive lens (in this case, a meniscus lens 
composed of PSK3 crown glass). This individual has a fitness of 154.43.  

Many different systems consisting of widely varying numbers of lenses and layouts 
appear over the next sixty or so generations. In generation 86, a five-lens system with 
one positive focusing meniscus lens and two doublets had sufficiently high 
performance to permit the remainder of the run to begin considering parsimony.  

A 4-lens system emerged in generation 207 with the same number of lenses (four) 
as the Tackaberry-Muller system, with two positive lenses followed by a doublet, and 
with the doublet consisting of a flint and crown class. The remainder of the run 
concentrated on optimizing various aspects of the system, including the effective 
focal length (EFL) to a value of 0.9979, the back focal length (BFL) to a value of 
0.570, and the evolved footprint (length) of the system to 1.353. 

This optimizing process reached a plateau by generation 490, yielding the best-of-
run individual (figure 8). Table 2 shows the lens file for the best-of-run individual.  

As can be seen in table 3, the best-of-run individual is a slight improvement over 
the design in the Tackaberry-Muller patent [15], using our fitness measure employing 
an exact ray trace of the marginal and chief rays for aberration calculations.  

Table 4 shows that the best-of-run lens system from generation 490 infringes claim 
1 of the Konig patent [6].  

Table 2. Lens file for the best-of-run individual from generation 490 

Surface Distance Radius Material Aperture 
OBJ 1010 1010 air  
EP 0.88 1010 air 0.18 

1 0.500217794 -7.260474245 SSK3 0.62 
2 0.079530961 -1.164063819 air 0.62 
3 0.229844668 7.54377332 SSK3 0.62 
4 0.02 -2.580718992 air 0.62 
5 0.305914688 1.632125441 LAK16A 0.62 
6 0.217637521 -1.348604772 SF58 0.62 
7 0.5706017465291 8.735622978 air 0.62 

IMS  1010   

Table 3. Characteristics of the best-of-run individual from generation 490 

 Tackaberry-Muller Genetically evolved 
Spherical aberration -0.003999242 -0.003102831 
Coma -0.002828716 -0.002496014 
Astigmatism 0.002817410 0.0027877324 
Petzval -0.006505427 -0.006353730 
Distortion -0.009906606 -0.009244075 
Distortion percentage 2.4166 1.8344 
Maximum distortion percentage 2.4166 1.8344 
Axial chromatic -0.001121585 -0.000737052 
Lateral chromatic -0.002213006 -0.001904380 

S.H. Al-Sakran, J.R. Koza,  L.W. Jones and



 Automated Re-invention of a Previously Patented Optical Lens System 35 

 

Table 4. Comparison of best-of-run lens system to Konig patent 

Claim 1 of Konig patent Genetically evolved optical system 
“An optical system for telescope 
eyepieces, comprising a front, a medial 
and a rear element, said elements being 
convergent and axially spaced by air,” 

The evolved solution contains three 
convergent elements (two single lenses 
and one doublet lens) and they are 
separated by air. 

“the sum of the distances apart of said 
elements being at most one-third of the 
focal length of said system,” 

The focal length of the evolved system is 
0.9958 and the sum of the distances is 
0.099531 (approximately 1/10). 

“said rear element being a single lens, the 
numerical value of the curvature of the 
rear surface of said lens being smaller 
than the numerical value of the refractive 
power of said lens,” 

The curvature of the rear element (the 
lens defined by surfaces 1 and 2) is 
0.1377 (i.e., 1/7.260474245) and its 
refractive power is 0.443518 (computed 
by the standard textbook formula).  

“said medial element consisting of at 
least one lens and at most two lenses,” 

The medial element (the lens defined by 
surfaces 3 and 4) is a single lens. 

“said front element consisting of at least 
one lens,” 

The front element (surfaces 5, 6, and 7) 
consists of two lenses. 

“the front lens of said medial element 
and that lens of said front element which 
faces this front lens of said medial 
element being convergent,” 

These two lenses (namely the medial lens 
defined by surfaces 3 and 4 and the 
portion of the doublet defined by surfaces 
5 and 6) are both convergent.  

“at least one optically effective surface of 
one of said two convergent lenses being a 
cemented surface,” 

The doublet lens defined by surfaces 5, 6, 
and 7 has a common surface 6.  

“the refractive power of one cemented 
surface of said two convergent lenses 
amounting to at least eleven twentieths of 
the algebraic sum of the refractive 
powers of all cemented surfaces of said 
convergent lenses,” 

The refractive power of the specified 
surface is 0.13652. It is also the only 
common surface and hence amounts to 
the entire sum described.  

“the numerical value of last said sum 
being greater than one twelfth of the sum 
of the numerical values of the curvatures 
of those surfaces of said convergent 
lenses which face each other.” 

It is equal to 0.136492 which is greater 
than one twelfth.  

Table 5 compares the features of the best-of-run lens system from generation 490 
with claim 1 of the Tackaberry-Muller patent [15]. The only difference (a slightly out-
of-range radius of curvature) is apparently due to the improved performance of the 
genetically evolved design compared to the 1958 design. The Tackaberry-Muller 
patent [15] cites the 1940 Konig patent [6] and is a special case of it.  
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Table 5. Comparison of best-of-run lens system to Tackaberry-Muller patent 

Claim 1 of Tackaberry-Muller patent Genetically evolved solution 
“A telescopic eyepiece adequately 
corrected for color” 

The genetically evolved solution is a 
slight improvement over the patented 
design. 

“consisting of three convergent 
components” 

There are three convergent components. 

“formed of four lenses” There is a total of four lenses. 
“the front component being a doublet” The front component is a doublet. 
“comprising a divergent lens of relatively 
low dispersion glass” 

The first material of the doublet is SF58, 
a flint (low dispersion glass). 

“and a convergent lens of crown glass” The second material of the doublet is 
LAK16A, a crown glass (convergent lens) 

“the dispersive indices of the two lenses 
of the doublet having a ratio lying 
between .415 and .445” 

The dispersive indices are 21.51 and 
51.78, with a ratio of .415. 

“and the radius of curvature of the 
internal contact surfaces lying between 
.86 F and 1.01 F,” 

The radius of curvature is 1.3.  

“the other convergent components being 
single lenses of crown glass.” 

The material for the other two single lens 
is SSK3, a crown glass.  

5 Comparison with Circuits, Controllers, and Antenna 

We observed several similarities between the work described in this paper and 
previous work on the automatic synthesis of circuits [7], controllers [8], and antennas 
[9]. First, a straight-forward representation based on elementary principles of the field 
was sufficient to enable genetic programming to produce human-competitive results 
in all four fields. Second, a high percentage of the randomly created individuals in 
generation 0 were unsimulatable, but the percentage of unsimulatable individuals 
dropped quickly (to single-digit levels) after only a few generations. Third, the best 
individuals in generation 0 and the early generations were structures with one (or just 
a few components) that partially satisfied a single prominent element of the fitness 
measure (apparently because of the low probability of numerous randomly created 
components being appropriately combined and harmoniously parameterized).  

6 Conclusion 

The paper described how genetic programming created the complete design for the 
Konig optical lens system patented in 1940 and the Tackaberry-Muller system 
patented in 1958. The entire lens system was automatically synthesized “from 
scratch”—without starting from a pre-existing good design and without pre-
specifying the number of lenses, the layout of lenses, or the numerical parameters of 
the lenses. The genetically evolved design in this paper is an example, of a human-
competitive result produced by genetic programming in the field of optical design.  
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Abstract. In this work a new approach, named Bayesian Automatic
Programming (BAP), to inducing programs is presented. BAP integrates
the power of grammar evolution and probabilistic models to evolve pro-
grams. We explore the use of BAP in two domains: a regression problem
and the artificial ant problem. Its results are compared with traditional
Genetic Programming (GP). The experimental results found encourage
further investigation, especially to explore BAP in other domains and to
improve the proposed approach to incorporating new mechanisms.

1 Introduction

Evolutionary Algorithms (EAs) have been successfully used to solve a wide vari-
ety of optimization and search problems. Two of them are the Genetic Algorithm
[1] and the Genetic Programming [2]. Both are based on the principle of selec-
tion and variation. While selection tries to collect individuals that better solve
a given problem, variation modifies individuals or combines individuals in order
to exploit new regions of the search space. Although EAs have been used with
success in many contexts, they have many problems such as the linkage problem
[3]. The linkage problem occurs when the variation process causes the disruption
of building blocks.

Recently, a new type of EA, based on probabilistic models to describe the
characteristic of the best chromosomes, has been proposed. It is known as Es-
timation of Distribution Algorithm (EDA). In EDA, the genetic pool is coded
as a distribution of the search space; in each generation, the population is gen-
erated from the current distribution; and the distribution is updated from the
best (and possibly the worst) individuals in the current population [4]. Many
tools that follow this paradigm have been developed, mainly for optimization.
A limited effort has been applied in the development of EDAs with the objec-
tive of automatic programming. Some algorithms proposed with the objective
of automatic programming are the Probabilistic Incremental Program Evolution
(PIPE) [5], the Stochastic Grammar-based Genetic Programming (SG-GP) [4]
and the Extended Compact Genetic Programming (eCGP) [6].

This work presents a new scheme, called Bayesian Automatic Programming
(BAP), that extends the multivariate probability distribution used in Bayesian
networks, such as that used in BOA [7] to Context Free Grammar based Genetic
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Programming (CFG-GP) [4][8]. Combining these two techniques, we intend to
use the space search restriction of CFG-GP and the Bayesian network popula-
tion description. This study allows to analyze the effectiveness of exploring the
correlation among concrete syntax tree hierarchy to find good solutions. Our ini-
tiative was motivated by the good results provided by BOA in the optimization
field and its easy adaptation to the genetic programming context through the
use of CFG-GP approach.

In order to extend BOA to genetic programming context, a linear represen-
tation of a derivation tree similar to the one introduced in Grammar Evolution
[8] is used. The linear representation easily adapts the genetic program repre-
sentation, usually a tree, to the requirements of the Bayesian learning algorithm
used in BOA. The approach was applied to traditional problems of genetic pro-
gramming to evaluate its performance.

This paper is organized as follows. The next section briefly reviews the main
genetic programming system based on EDAs. Section 3 summarizes Bayesian
network, context free grammar and CFG based genetic programming. The ap-
proach BAP is presented in Section 4, its main algorithm, chromosome represen-
tation, the chromosome generation algorithm and the mutation operator. Section
5 describes the experiments and its results. Finally, the conclusions of the work
are presented in Section 6.

2 Literature Review

Recently, a number of evolutionary algorithms that guide the exploration of the
search space by building probabilistic models of promising solutions found so far
have been proposed. These algorithms have shown to perform very well on a wide
variety of problems [9]. Most of them solve problems in the domain of Genetic
Algorithm. Among this kind of algorithm, we can mention PBIL [10], BOA [7]
and eCGA [11]. Just few explore the use of stochastic models for Automatic
Programming. Among these, we can cite PIPE [5], eCGP [6] and SG-GP [4].

BOA is an optimization system which uses an estimation of a probability dis-
tribution of promising solutions in order to generate new candidate solutions. To
estimate the distribution, techniques for modeling multivariate data by Bayesian
networks are used [7].

The Probabilistic Incremental Program Evolution (PIPE) [5] is an automatic
programming algorithm based on PBIL [10] which uses a univariate probabilistic
model to evolve programs. The distribution on the GP search space is represented
as a Probabilistic Prototype Tree (PPT); in each PPT node stand the proba-
bilities for selecting any variable and operator in this node. After the current
individuals have been constructed and evaluated, the PPT is biased toward the
current best and the best-so-far individuals. One feature of the PIPE system is
that the PPT grows deeper and wider along evolution, depending on the size
of the best trees, since the probabilities of each variable/operator have to be
defined for each possible position in the tree [4].
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SG-GP [4] is a distribution based evolution system that allows the use of
context free grammar (CFG) to introduce prior knowledge to the search of best
programs. The distribution on the GP search space is represented as a stochastic
grammar, where each derivation di in a production rule is attached a weight wi,
and the changes for selecting derivation di are proportional to wi [4]. Structures
that compose the best (worst) programs have their weight increased (reduced).
New programs are generated from the probabilistic model by selecting grammar
derivations proportionally to their weight.

The extended compact genetic programming (eCGP) is an algorithm based
on the extended compact genetic algorithm (eCGA) and PIPE. It combines the
capability of handling multivariate interactions among variables of eCGA with
the variable-size program tree representation of PIPE. The probability distri-
bution is modeled using a marginal product model (MPM). The optimal prob-
abilistic model is found using a greedy search algorithm that minimizes the
model complexity. The structure of the model found is composed by partitions
aggregating nodes. In each of this partition were recognized relevant conditional
relationships. Additionally, nodes parameters are calculated as well.

In their work [6], Sastry and Goldberg propose the use of Bayesian networks-
based models for automatic programming. Moreover, Blanco and Lozano [12]
presented empirical results suggesting that algorithms which use Bayesian net-
work to model the probabilistic distribution have better performance in discrete
domains (in relation with convergence velocity, convergence reliability and scal-
ability) for complex function than univariate models. These principal points
support our study, that is, to explore the Bayesian network as model in EDAs
to induce programs. Beside that, we propose the use of a compact solution rep-
resentation as alternative to the tree used in PIPE and eCGA.

3 Background

In this section, the main techniques used to construct our approach are pre-
sented. First, the Bayesian network, a probabilistic model used to represent the
component dependences of the individual evolved. After, we introduce the gram-
mar evolution approach.

3.1 Bayesian Network

A Bayesian network is a graphical model for probabilistic relationships among
a set of variables [13]. It is composed by a vector of random variables X =
(X1, ...,Xn) and an acyclic graph G = (X,E) whose edges E ⊆ [X] represent a
conditional relationship. Random variables are functions from events in a sample
space to a domain representing the qualities or distinctions of interest [14]. If
there is an edge between the random variables from Xi to Xj , Xi is said to be
parent of Xj . A Bayesian network gives a complete description of the domain,
being able to describe the full joint probability distribution from the pair (X,G).

Learning the network structure can be done using an algorithm with two
components: a scoring metric and a search procedure [15]. A scoring metric is
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a measure of how well the network models the data. Prior knowledge can be
incorporated into the metric to reduce the computational time of the learning
algorithm. The search procedure explores the space of all possible networks in
order to find the network (or a set of networks) with the value of a scoring metric
as high as possible. The space of networks can be reduced by constraint operators
[7]. A well known algorithm for this task is K2 [16]. K2 uses a model selection
approach where a scoring metric guides a simple greedy algorithm in the search
for the best network. It has O(m u2 n2 r) time complexity for learning the
network, where m is the number of cases, u is the maximum number of parents
that any node is permitted to have, n is the number of nodes and r is the number
of possibles events [16].

Using the description of domain through a Bayesian network, it is possible
to generate new instances of the variables with similar properties as those of the
training data [7].

K2 returns the network structure and a conditional probability table (CPT)
for each Xi ∈ X. A conditional probability table stores the chance of the occur-
rence of an event given that a second event has already occurred.

Each row in a CPT contains the conditional probability of each node value
for a possible combination of values for the parent nodes [17].

3.2 Context Free Grammar, Genetic Programming and the
Grammar Evolution Approach

Let G = {N,T, P,S} be a grammar, where N is the set of non-terminals, T is
the set of terminals, P is a set of production rules that maps the elements of N
to T ∪ N , and S is a start symbol that is member of N [4]. An example of a
grammar is shown in Figure 1.

N={expr, boper}, T={X, +, -, %, *}, S={expr}
P =

{
< expr > ::= < expr >< boper >< expr > | X
< boper > ::= + | − | ∗ | %

Fig. 1. An example of a free context grammar

To generate a string derivable from G, it is necessary to start with S, choose a
formation rule S −→ α and successively expanding the non-terminals in α until
only terminals are left. A tree which represents the steps taken in the production
process is denoted concrete syntax trees.

A straightforward way to compose a string is, starting from the start symbol,
randomly select a formation rule from a grammar when necessary to translate a
non-terminal. This ”obvious solution” has two drawbacks. The first one is that
the process can generate extremely long sentences. The second one is that not
all possible sentences of a maximum size have the same probability of being
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generated. Given the grammar S −→ a | A;A −→ b | c, it will generate a with
probability 1

2 , while b and c will be generated with probability 1
4 . The structure of

the grammar affects the probability as well. Two distinct grammars can generate
the same sentence with different probabilities [18].

CFG can be used to express problem-specific constraints on the GP search
space by dictating how a chromosome should be constructed. A GP that uses a
CFG in this scheme is called Context Free Grammar based Genetic Program-
ming [4].

As described above, a sentence, which could be a program, can be constructed
using a grammar. In order to do that, it is necessary to decide which formation
rule should be selected every time a non-terminal is translated. In Grammatical
Evolution [8], a chromosome created randomly and structured as a string com-
posed of 0 and 1 is used to make this decision. Initially, the grammar formation
rules have an integer assigned to each of them. Then, fixed sized substrings of
the chromosome are composed and, after converted to integers, they are used to
select a formation rule each time a non-terminal has to be translated.

4 Bayesian Automatic Programming
4.1 General Algorithm

This section describes the BAP general algorithm. Like BOA, BAP uses a
Bayesian network to estimate the joint distribution of promising solutions. This
estimation is used to generate new candidate solutions. BAP uses the flexibility
of the genetic programming paradigm to try to extend the power of description
of a Bayesian network introduced in BOA to the automatic program creation.

The pseudocode of the BAP is shown in Algorithm 1.The algorithm initially
generates an initial population P (0) using a recursive uniform random genera-
tion method. At each generation, the population P (t) is evaluated by a fitness
function and selected from the current population using the elitism selection
method, but other selection methods can be used as well. A Bayesian network
that fits the selected set of solutions S(t) is learned using the K2 algorithm
and constraints. New solutions O(t) are generated using the joint distribution
encoded by the learned network and can undergo mutation. The set of selected
solutions is placed together with the newly generated solutions to replace the
entire old population. The process is repeated until the termination criteria is
met.

4.2 BAP Individual Codification

Candidate solutions are represented by a fixed size vector of integers. This vector
will be called chromosome, and each position in the vector will be called gene.
Each gene stores one number associated with a formation rule from the grammar
used to model the problem. The formation rules of a grammar are enumerated
sequentially starting from zero. Each time a grammar formation rule should
be chosen to translate a non-terminal using right reduction, as introduced in
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Algorithm 1 General Algorithm
1: t = 0
2: Generate the initial population P(0) using a uniform random generation algorithm
3: while termination criteria is not met do
4: Select a set of promising solutions S(t) from P (t)
5: Construct the Bayesian network B using K2 and constraints
6: Generate a set of new solutions O(t) according to the joint distribution encoded

by B and a grammar G
7: Apply mutation on O(t)
8: Create a new population P (t + 1) by replacing all solutions from P (t) with

O(t) ∪ S(t)
9: t = t + 1

10: end while

Section 3.2, the number assigned to the chosen formation rule is concatenated on
the right side of the chromosome. Therefore, a chromosome stores the number of
the rule rather than the program itself. This chromosome representation keeps
the implicit hierarchy of the derivation tree and can be used to restore this
tree through the grammar. Figure 2 shows an example of this representation
for a simple arithmetic grammar: the enumerated formation rules; a possible
chromosome and its production tree.

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< E > ::= < E >< B >< E > (0)

::= X (1)
< B > ::= + (2)

::= * (3)

E

E

E

x

B

+

E

x

B

∗

E

x

chromosome = 〈0, 0, 1, 2, 1, 3, 1〉

Fig. 2. An example of enumerated formation rules, a chromosome and the concrete
syntax tree

Because the K2 algorithm learns the network structure from a set of tuples,
the vector representation of the chromosomes is recommended.

As defined previously, a Bayesian network is represented by a graph and a
set of random variables. In BAP, there is a random variable associated with each
gene of a chromosome. The i-th random variable represents the integers observed
in the i-th gene of a chromosome.

The solution representation used in BAP allows the implicit hierarchy of
the concrete syntax tree to be used as prior information to the K2 algorithm.
Moreover, the use of a grammar to guide the construction of a solution allows
the application of prior knowledge about the problem to reduce the search space.
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4.3 Individual Generation

BAP applies two different methods for generating new chromosomes: one to the
initial population and other to the following generation. To get an initial popu-
lation with high diversity, a uniform random generation algorithm [18] is used.
This algorithm guarantees that all chromosomes of a fixed size, given a gram-
mar, have the same probability of being chosen. This allows a good distribution
of the chromosomes through the search space.

All chromosomes created after the initial population are built using the map-
ping process. The mapping process basically follows the procedures introduced
in Section 3.2 and 4.2. However, this mapping process differs in the way that it
uses the Bayesian Network to influence the formation rule selection. Algorithm
2 shows a pseudocode of the mapping process to one chromosome C. It begins
creating an auxiliary vector I . This vector initially stores only the start symbol
S of the grammar G and at the end of the process it will contain the program
encoded by C. At each iteration, the algorithm searches for a non-terminal in I
and a roulette wheel algorithm [19] consults the CPT of the random variable re-
lated to this non-terminal in order to select a formation rule. The number of this
formation rule is attributed to c and inserted at the end of C , the non-terminal
is replaced in I by the right side of the formation rule chosen.

Algorithm 2 Individual Creation Algorithm
1: i = 1. Index of the chromosome vector.
2: I=S ∈ G. I is an auxiliary vector which stores non-terminals and terminals.
3: while I has non-terminal and i ≤ maximum size of a chromosome do
4: r=normalized random number
5: c=rouletteWheel(r,CPT of Xi). Xi is the i-th random variable of a Bayesian

network
6: Insert c at the end of C.
7: Remove the first non-terminal in I and replace it by the right side of the forma-

tion rule chosen.
8: i = i + 1
9: end while

10: if I has a non-terminal then
11: Return C
12: else
13: Return FALSE
14: end. if

The composition process of a chromosome using a grammar as applied in
the mapping has the tendency to generate shorter or very long chromosomes, as
exposed in Section 3.2. To avoid that, it was necessary to use a restriction to
control their size. This control consists of comparing the size of the produced
chromosome with the average size of the chromosomes set used to learn the
Bayesian network. A tolerance of δ genes in the size is used to permit the evo-
lution of the model. Chromosomes that does not comply with this restriction or
are bigger than the maximum size are discarted.
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4.4 Mutation

BAP applies a mutation operator to avoid local optimum and evolution stagna-
tion.

The mutation operation replaces a subtree of the derivation tree mapped in a
chromosome. The portion removed is replaced by a new one generated through
the uniform random generation algorithm. A mutation constant μ is defined by
the user to determine the probability of a gene undergoing mutation. A gene is
mutated if the inequality (1) is satisfied.

μ

| C | ≥ r (1)

5 Experiments

We applied BAP to two traditional genetic programming problems the symbolic
regression and the artificial ant problem, to evaluate its performance. In all tests,
BAP is compared with the Lilgp tool set version 1.1 [20], a traditional GP tool.
The methods were compared by their cumulative success frequency during 50
generations in 100 runs and by the average of the fitness during 50 generations
also in 100 runs.

5.1 Configurations

Symbolic Regression. In this problem, a set of records with input and output
values is provided. The objective is to find a function which produces the output
value from the input. In our experiments, the objective function is:

f(x, y) = x4 + 2xy + y4 (2)

The input data is composed by two sets of twenty real numbers produced
randomly in the range [−10...10]. The fitness function is the sum of the error
taken over the 20 fitness cases. The Figure 3 shows the grammar used by BAP.
Table 1 contains the configuration of BAP and GP parameters for the symbolic
regression problem.

N = {expr, boper, var}, T = {X, Y, +, −, %, ∗}, S = {expr}

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< expr >::=< expr >< boper >< expr >

| (< expr >< boper >< expr >) | < var >

< boper >::= + | − | ∗ | %
< var >::= X | Y

Fig. 3. Grammar used by BAP in the symbolic regression problem
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Table 1. Configuration of the symbolic regression parameters

BAP GP
Parameter Value Parameter Value

Population size 500 Population size 500
Generation number 50 Generation number 50

μ 0.3 Mutation rate 0.01
δ 10 Crossover 0.7

Chromosome size 60 Tournament size 5
Terminal Operators %, +, ∗, −
Terminal Operands X, Y

Artificial Ant. The objective in the artificial ant problem is to find a program
that controls the movements of an ant which should get as food as possible with
a fixed maximum number of actions. The artificial ant specification is the same
as defined in [21] . The ant is inserted on a 32 by 32 toroidal with 91 pieces
of food composing a discontinuous trail. The fitness function is the amount of
food pieces missed on the trail. Figure 4 shows the grammar used by BAP.
Table 2 contains the configuration of BAP and GP parameters for the artificial
ant problem.

N={expr, line}, T={left(), right(), move()}, S={expr}

P =

⎧⎪⎨⎪⎩
< expr >::=< line > | < expr > < line >

< line >::= if food ahead() {< expr >} else {< expr >} | < op >

< op >::= right() | left() | move()

Fig. 4. Grammar used by BAP in the symbolic regression problem

Table 2. Configuration of the artificial ant parameters

BAP GP
Parameter Value Parameter Value

Population size 4000 Population size 4000
Generation number 50 Generation number 50

μ 0.3 Mutation rate 0.01
Chromosome size 70 Crossover 0.7

Tournament size 5
Terminal Operators move(), left(),

right(), food ahead()
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Fig. 5. Cumulative frequency of success (a) and the average (b) of the fitness for
symbolic regression
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Fig. 6. Cumulative frequency of success (a) and the average (b) of the fitness for the
artificial ant

5.2 Experimental Results

Figure 5.a shows the cumulative frequency and Figure 5.b presents the average
of the fitness for BAP and GP in the symbolic regression problem. Figure 6.a
and Figure 6.b present these same measures now for the artificial ant problem.

As observed in all graphs, BAP outperforms the traditional GP in both prob-
lems. Although the time performance of the two systems was not properly com-
pared, it was possible to note that BAP is much slower than GP, when using
long chromosomes. This happens due to the high complexity of the K2 algo-
rithm, even when using the node order as prior knowledge. As the chromosome
size has influence in this complexity it was limited to a low value.

One important point to note in Figures 5.b and 6.b is the convergence of
BAP. The BAP algorithm converges very fast to an optimum, not always the
global, this means a lost of diversity in the population. In BAP, the probabilistic
model evolves through the generations and becomes more restrictive, the chro-
mosomes generated more similar. This happens because the Bayesian network
describes only the chromosomes used as learning data. These chromosomes rep-
resents only a reduced part of the whole population. In contrast, the model used
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in PIPE and eCGP keeps all possibles terminals and functions in every node
through the generations. Furthermore, the BAP repopulation process discards
all chromosomes of the predecessor generation. In this way, the building blocks
belonging to chromosomes not used to train the model are lost. Figure 5.a shows
that besides BAP has a better overall result, its evolution does not keep the
rate of the beginning of the evolution, when the population has more diversity.
The starvation of the evolution also indicates that the mutation operator has a
limited efficiency.

We also applied BAP to another experiment of symbolic regression using
the expression x4 + x3 + x2 + x. To solve this problem, it was used a grammar
with more operators (sin, cos, tag, ln, exp) and a training data with values near
to zero. In this configuration, BAP presents worse performance compared to
GP. One possible explanation is that GP outperform BAP in harder problems.
However, further experiments have to be performed on harder and different types
of problems to learn true usefulness of BAP.

6 Conclusion

This work presents a novel approach called Bayesian Automatic Programming
(BAP), which integrates the power of GP and EDA technologies to induce pro-
grams.

BAP has some limitations, such as the prohibitive use of long chromosomes,
which is caused by the time complexity of K2 algorithm. In addition, BAP has
the tendency to generate very short or very long chromosomes due to the irregu-
lar probability distribution that the grammar based creation method undergoes.
However, it shows the ability to solve the problems of symbolic regression and
artificial ant with advantage over classical GP, when comparing the number of
best solutions found and the convergence speed to the best solution.

The good performance observed in the two studied problems encourages its
application to new problem domains. In special, we intend to evaluate the per-
formance of the algorithm in the deceptive trap problem [22], and compare its
results with PIPE and eCGP.

To avoid local optimal caused by the lost of building blocks during the evo-
lution, new selection and population replacement mechanisms can be applied.
The production of chromosome based on grammar can also be improved. Our
overall conclusion is that the scheme proposed was successful enough to deserve
better studies.
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Abstract. This paper proposes the association of two approaches of
GP which improve efficiency and reduce bloat. The first approach is to
use a multi-population version of GP and the second one is to employ
populations that can change size dynamically and adaptively. The latter
approach consists in deleting or adding individuals in the population as
a function of the current fitness and two other parameters. We test this
approach on three well-known problems in GP, artificial ant, even parity
5 and one instance of the symbolic regression. We find that the combina-
tion of these two methods improves the quality of the individuals in the
populations while keeping their size as small as possible and decreases
the amount of resources required.

1 Introduction

A well-known drawback of Evolutionary Algorithms is the amount of compu-
tational effort that is sometimes required for solving difficult applications. This
problem is more marked when algorithms use variable size chromosomes, which
has been traditionally the case in Genetic Programming (GP) [1]. In fact, it
has been observed that GP individuals tend to steadily grow in size as genera-
tions are computed ([2, 3]). The phenomenon goes under the name of bloat and
there have been several proposals aimed at preventing such an inordinate growth
(see [4] for a rather complete survey). For instance, the fitness function may em-
body a penalty associated to the size of the individuals, so that short individuals
are favored. Another proposal is to set a limit for the maximum size. In the last
few years some researchers have tried to apply multiobjective techniques to GP,
in such a way that both size of individuals and fitness are considered as tasks to
be optimized ([5]). Most of these techniques have some drawbacks: either they
change the way in which fitness is computed, thus influencing the structure of
the fitness landscape and the main characteristics of the problem, or they re-
quire additional computational costs to be implemented, often thwarting their
positive effects on size. Moreover, most proposed solutions focus on individual
size and do not take into account the global problem of population growth as a
whole.
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In some studies [6, 7, 8], the bloat and reduction of computational effort prob-
lems have been approached employing another perspective: given that the in-
crease in size of individuals produces an overall growth in the population, the
population size has been dynamically changed, trying to control the computa-
tional effort required for evaluating individuals. The technique could later be
combined with any of the traditional ones for controlling individuals length.
Variable-size populations have seldom been used: two studies pertaining to GAs
are [9] and [10]. Structured models using variable-size populations appears in
[11] and [12].

In this study, we further improve the semi-automatic sizing of the population
at run time, and we structure the population as an ensemble of multi-populations
between which migration of selected individuals is allowed. This approach, called
island model, has been empirically found very useful for improving the numerical
characteristics of the search, as well as to decrease computing time when it is
executed on distributed hardware (see [13, 6] and references therein for more
details).

The paper is structured as follows: in section 2 we motivate the use of popu-
lations of dynamic size in GP and we describe two algorithms allowing to add or
suppress individuals from a population “on the run”, according to some parti-
cular events occurring during the evolution. Section 3 briefly introduces the set
of GP problems used to test the suitability of these algorithms and the GP pa-
rameters used in our experiments. Section 4 presents and discusses experimental
results in terms of efficiency and bloat reduction. Section 5 offers our conclusions
and hints for future work.

2 Dynamic Size Populations in Multi-population GP

Dynamic size population means that the number of individuals in the population
can be modified during the run. The origin of this idea is found in [14] and is
called plague. In this early version, some individuals were suppressed from the
population at each generation, which is helpful to reduce the effort but can also
diminish population diversity to a point were further evolution is impossible. The
following step has been to delete individuals from the population while the best
individual found keeps improving along generations, and to add individuals to
the population if there is no improvement. The suitability of this idea has been
empirically shown in [8, 6]. Indeed, with this method, the individuals found are
fitter on the average, and the computational effort is considerably reduced. Here
we further improve the self-adaptive mechanism by which individuals are added
or deleted from/to the population. In addition, we modify the source of new
individuals by using a multi-population model instead of a standard panmictic
GP population.

2.1 Add or Delete Individuals?

To answer this question, we have to calculate a value called pivot (p), which
is obtained by dividing the best fitness at the first generation by the maximum
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allowed number of generations gmax in the run for a given problem. The pivot cal-
culated in this way is fixed and won’t be modified during the run. Furthermore,
a value called period (t) must also be calculated; it is the number of consecutive
generations after which we add or delete individuals. So, after period generations,
we compute the difference in best fitness at generation g with respect to the best
fitness at generation g − t. This quantity is divided by t. If the result is larger
than the pivot p then we delete some individuals, otherwise we add individuals.

Now that we have described when individuals have to be deleted or added
from/to the population, we have to specify which ones must be deleted and how
the new individuals to be added are generated.

2.2 The Removal of Individuals

We use a new method for suppressing Ndel individuals which is based on the
following equation:

Ndel = Pg − t ∗ fg−t − fg

fg−t
.

where P is the initial population size, fg is the best fitness of the population at
generation g, and fg−t is the best fitness at generation g−t. Thus, the expression
fg−t−fg

fg−t
is the fractional gain in fitness from generation g − t to generation g.

To suppress Ndel individuals, we first determine the 2×Ndel worst individuals
in the population and, among them, we suppress the Ndel having the largest size,
in order to give a contribution for fighting bloat. Furthermore, a lower limit on
the size of the population must be fixed in order to insure sufficient diversity in
the population. We use two values for the lower limit of the population size: two
individuals or half of the initial population size.

2.3 The Addition of Individuals

In single-population varying-size GP, as described in [8, 6], the new individuals
are created by applying mutation on the best Nadd individuals, where Nadd is the
number of individuals to be added. This solution presents a potential problem,
since mutation does not guarantee that the newly generated individuals will have
a good fitness value. In the approach presented in this paper, the individuals
that are added to one subpopulation are (copies of) the best ones in another
coevolving subpopulation.

Now the way population size will increase has to be defined. We propose
four methods that we call, respectively, M1, M2, M3, M4. M1 increases the
population size in order to have the final size equal to the initial size if the run
does not find a satisfying solution. In other words, calling Pg the population size
at generation g before adding individuals, we add a number of individuals given
by (P0 − Pg)/(gmax − g). This is graphically depicted in figure 1 (a).

The second addition method (M2) suggests refilling the population propor-
tionally to a certain coefficient calculated on the first best fitness and the current
best fitness. More precisely, if fg and f0 are the best fitness at generation g and
generation 0 respectively, then the coefficient is: c =

√
fg/f0, and the number
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Fig. 1. Graphic representation of the four methods used to increase the population
size. (a): M1, (b): M2, (c): M3, (d): M4. The idealized curves show the correlation
between the population size (black curve) and the evolution of the best fitness (gray
curve) (see text)

of individuals added is (c P0 − Pg)/(gmax − g). Figure 1 (b) displays the idea
behind the method.

The third method (M3) is similar to the first one with a projected final
population size which is twice the initial size.

The last method (M4) is the same as the third one but the population size
is never larger than the initial size. The two last methods can be visualized in
figure 1(c) and 1(d).

3 Test Problems and GP Parameters

We decided to address a set of problems that have been classically used for
testing GP: the symbolic regression problem, the artificial ant problem on the
Santa Fe trail and the even parity problem. The following is a brief description
of these problems (details can be found in [1]).

Symbolic Regression Problem. The problem aims to find a program that
matches a given equation. We employ the classic polynomial equation f(x) =
x4 +x3 +x2 +x, and the input set is composed of 1000 equidistant points in the
range [0,2] (1000 fitness cases). For this problem, the set of functions used for
GP individuals is the following: F = {∗, //,+,−}, where // is like / but returns
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1 instead of error when the divisor is equal to 0. We define the fitness as the
sum of the square errors at each test point. Consequently, lower fitness means a
better solution.

Even Parity 5 Problem. The boolean even parity k function of k boolean
arguments returns true if an even number of its boolean arguments evaluates
to true, otherwise it returns false. If k = 5, then 25 = 32 fitness cases must be
checked to evaluate the fitness of an individual. The fitness is computed as 32
minus the number of hits over the 32 cases. Thus a perfect individual has fitness
0, while the worst individual has fitness 32. The set of functions used to code
individuals is the following: F = {NAND, NOR}. The terminal set is composed
of 5 different boolean variables T = {a, b, c, d, e}.

Artificial Ant Problem. In this problem, an artificial ant is placed on a 32
× 32 toroidal grid. Some of the grid cells contain food pellets. The goal is to
find a navigation strategy for the ant that maximizes its food intake. We use
the same set of functions and terminals as in [1]. As fitness function, we use the
total number of food pellets lying on the trail (89) minus the amount of food
eaten by the ant during his path. This turns the problem into a minimisation
one.

GP Parameters. In all the experiments we use the following set of parameters:
generational GP, crossover rate : 95%, mutation rate: 0.1%, tournament selection
of size: 10, ramped half and half initialization, maximum depth of individuals for
the creation phase: 6, maximum depth of individuals for crossover: 10, elitism
(i.e. survival of the best individual into the newly created population at each
generation). Furthermore, to avoid complicating the issue, we refrained from
using advanced techniques such as ADFs, tailored function sets and so on.

Population Structure. We have used an island model with five populations
connected according to a random communication topology. Individuals are ex-
changed every ten generations and the number of migrating individuals, which
are the best in their island, is 10% of the current size of the given sub-population.
All the populations send their boats of migrants to a master process which ac-
cumulates the individuals and then sends an appropriate amount to each pop-
ulation, choosing the destination island in a random way. In the destination
island, the migrants replace an equal number of worst individuals. Communica-
tion is synchronous i.e., all the populations send and receive individuals before
computing the next generation.

Computational Effort. In GP, comparing fitness values during generations or,
as it is usually done in GAs, comparing in terms of the number of fitness evalu-
ations performed is inadequate. While this is often acceptable in EAs with fixed
length representations, it can be misleading in GP, where individuals change
their size dynamically. We thus analyzed the data as in [13] by means of the
effort of computation at generation g which is the total number of nodes that
have been evaluated before generation g+1 takes place. Note that, stricly speak-
ing, one should take into account that evaluation times are different for different



Dynamic Size Populations in Distributed Genetic Programming 55

operators, but our simplification is still useful as a first approximation. Clearly,
this measure is problem-specific but it is useful to compare different solutions of
the same problem.

4 Experimentals Results

The aim of the simulations is to empirically give evidence of the fact that dy-
namic size population associated with multi-population GP produces better solu-
tions and saves computational effort than in the case of standard GP. In section
2 we defined a method for deleting individuals from the population, and four
methods, called M1, M2, M3, and M4 for the addition of individuals. Thus,
in the experiments presented in this section we have tested four different com-
binations of addition and suppression of individuals in the population for each
problem. In section 2.1 we defined a parameter called period which was the num-
ber of generations elapsed between a suppression or addition operation in the
populations. We did different runs for each problem with period values between
1 and 5. Results are very similar. For reasons of space, here we report only the
results for a single period value for each problem.

Fitness Evolution. Figures 2 (a), (b), and (c) depict the average fitness of the
ensemble of the islands for the three benchmark problems as a function of the
computational effort. The values are the average over 100 independent execu-
tions for each problem and for each method. The thick black curve refers to the
standard multi-population model (i.e. the model with fixed size subpopulations),
while the other four curves each represent one the four models of variable mul-
tipopulation size.

In the ant problem – figure 2 (a) – we see that all four methods using dy-
namical population size give better results with respect to the standard fixed-size
island model. For instance, to reach an average fitness of about 15, the standard
distributed model needs a computational effort of about 5.5 × 106, while the
same average fitness level is reached by the M1, M2, M3, and M4 variable-island
size methods with an effort that is approximately comprised between 2 × 106

and 3 × 106.
For the even 5 parity and symbolic regression problems – figures 2 (b) and

(c) – we observe the same general trend i.e., the variable-size methods are all
superior to the standard method but the differences are smaller. Indeed, standard
deviations at the end of the evolution for each problem (not shown in the figures
to avoid cluttering them) indicate that, while differences are significant between
the standard model and the ensemble of variyng-population size models for the
ant problem, they are not for the other two problems, differences among the
various curves being of the same order as the standard deviation.

Success Rate. The success rate is a good performance indicator when the
problem solution is known, which is the case here (see for instance [6] for a
discussion about this issue). Success rates for each problem are reported in table
1 with their standard deviations. These figures confirm that, for the ant problem,
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Fig. 2. Average fitness results vs computational effort. Each curve is an average over
100 runs. (a) Artificial Ant, (b) Even Parity 5, (c) Symbolic Regression

variable-size islands, whatever the method used for suppression and addition
of individuals, are better than the standard model. For the even 5 parity and
symbolic regression problems, the results are still favorable to the dynamical
island models since there is always a method among the four that is better than
the standard island model. However, for the remaining methods the differences
are within the standard deviation and thus the statistical significance is doubtful.

Program Size Evolution. Figures 3 (a), (b), and (c) show the evolution of
the size of the programs in the populations with time. It is easily seen that, in
general, methods M1, M2, M3 and M4 that automatically adjust the population
size in the islands offer an easy and implicit means for limiting bloat. This had
already been found to be the case for the usual constant-size island model with
respect to standard panmictic genetic programming [15]. Therefore, variable-size
populations are a really effective and transparent way for limiting bloat. Now,
in the figures, it is apparent that method M3 is less effective than M1, M2, and
M4 in this respect. Keeping in mind that method M3 is allowed to add individuals
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Table 1. Success rates at three different computational effort values for the three test
problems and for the five structured population models. (a): artificial ant, (b): even 5
parity, (c): symbolic regression. Standard deviations of each value is included between
parenthesis

EC 1 EC2 EC 3
Standard 0.20(0.04) 0.28(0.04) 0.31(0.05)

M1 0.51(0.05) 0.56(0.05) 0.59(0.05)
M2 0.55(0.05) 0.60(0.05) 0.63(0.05)
M3 0.59(0.05) 0.61(0.05) 0.63(0.05)
M4 0.61(0.05) 0.65(0.05) 0.65(0.05)

(a)

EC 1 EC2 EC 3
Standard 0.04(0.02) 0.07(0.03) 0.08(0.03)

M1 0.05(0.02) 0.06(0.02) 0.07(0.03)
M2 0.12(0.03) 0.13(0.03) 0.16(0.04)
M3 0.07(0.03) 0.07(0.03) 0.08(0.03)
M4 0.04(0.02) 0.04(0.02) 0.08(0.03)

(b)

EC 1 EC2 EC 3
Standard 0.41(0.05) 0.44(0.05) 0.46(0.05)

M1 0.52(0.05) 0.53(0.05) 0.53(0.05)
M2 0.60(0.05) 0.61(0.05) 0.62(0.05)
M3 0.48(0.05) 0.49(0.05) 0.49(0.05)
M4 0.51(0.05) 0.52(0.05) 0.52(0.05)

(c)

up to twice the original population size (see section 2.2), it is clear that this has a
negative influence on bloat. However, the other three methods offer performances
that are equivalent to M3, and thus program growth can be best controlled by
using one of them. It is clear that, since bloat is not controlled explicitly in
our models, it would be possible to add other bloat-reducing techniques to the
system. A good candidate could be Poli’s Tarpeian method, which is theoretically
justified and extremely easy to implement [16].

Population Size. In figures 4 (a), (b), and (c) we report the evolution of the
total population size for the five cases. The first remark is that, except in two
cases that will be discussed below, the population size in the adaptive-size models
always remains smaller than the standard model (horizontal line). This explains
why the computational effort required is lower for the same solution accuracy.
We also see that the evolution of the total population size for the four variable-
size methods is clearly correlated with the previous curves of program size. This
empirically shows that one of our original goals, that of limiting program size by



58 D. Rochat, M. Tomassini, and L. Vanneschi

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Generation

A
vg

 L
en

gt
h 

x 
P

op
ul

at
io

n 
S

iz
e

standard
M1
M2
M3
M4

0 50 100 150 200
0

1

2

3

4

5

6

7
x 10

5

Generation

A
vg

 L
en

gt
h 

x 
P

op
ul

at
io

n 
S

iz
e standard

M1
M2
M3
M4

(a) (b)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

4

Generation

A
vg

 L
en

gt
h 

x 
P

op
ul

at
io

n 
S

iz
e

standard
M1
M2
M3
M4

(c)

Fig. 3. The average population length times the total population size is represented
as a function of generation number. Averages are over 100 independent runs for each
problem and for each model. The thick curve refers to the standard island model, while
the other curves are for the varying-size population models (see box). (a) Artificial Ant,
(b) Even 5 Parity, (c) Symbolic Regression

adjusting the size of the populations has been reached. Again, the only variable-
size method that is less effective in this respect, especially for the even 5 parity
problem, is M3, for the reasons mentioned above.

Diversity Evolution. With smaller subpopulations one might fear that diver-
sity would tend to be lost, which could have adverse effects on the evolution
of good solutions: a too homogeneous population could loose its evolvability.
We have measured global population diversity for the test problems and we ob-
serve that this is not the case. As an example, in figure 5 we report phenotypic
and genotypic entropy against generation number for the even-parity 5 problem
(these measures are standard and their description can be found for instance in
[17]). We see that diversity is maintained in the variable-population size models
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Fig. 4. Population size as a function of the generation number. Curves are averaged
over 100 runs for each problem and for each model. (a) Artificial Ant, (b) Even 5 Parity,
(c) Symbolic Regression

at approximately the same level as for the standard fixed-size multi-population
system. The jumps are due to synchronous individual migration.

5 Conclusions

Following some recent studies [7, 8, 6], we have used a new methodology in ge-
netic programming that consists in subdividing the total population into several
subpopulations and making each subpopulation size a dynamical, self-adjusting
parameter. It is already empirically well-known that multi-population models
are in general beneficial in evolutionary computation (see for instance [6]). In
fact, it has been reported that they are more efficient in problem solving, and
that they also have an indirect positive effect on program size, thus limiting
bloat. In the present work, we have found the same trends, but the results are
even better both in terms of success rates, and also from the point of view of the
effort expenditure and program size. This shows that the little-studied field of
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Fig. 5. Diversity as a function of the generation number for the standard island model
and the variable-size population models for the even-parity 5 problem. Curves are
averaged over 100 runs. (a) phenotypic entropy; (b) genotypic entropy

variable-size populations can offer new insights and more powerful evolutionary
algorithms. Our findings are empirical; therefore, we cannot extrapolate them
beyond the simple benchmark problems studied here. Indeed, already the the-
ory of standard panmictic GP is rather difficult [4]. Variable-size populations
will be even harder to model and analyze. However, the trend seems to be con-
sistent and thus the methodology could be a promising one. To confirm these
preliminary results we intend to test our models on a more complete benchmark
suite, including some difficulties not present here, such as more difficult regres-
sion problems containing constants. A more detailed treatment of the statistical
significance of the results is also called for.
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Abstract. Cartesian Genetic Programming is a graph based representa-
tion that has many benefits over traditional tree based methods, includ-
ing bloat free evolution and faster evolution through neutral search. Here,
an integer based version of the representation is applied to a traditional
problem in the field: evolving an obstacle avoiding robot controller. The
technique is used to rapidly evolve controllers that work in a complex en-
vironment and with a challenging robot design. The generalisation of the
robot controllers in different environments is also demonstrated. A novel
fitness function based on chemical gradients is presented as a means of
improving evolvability in such tasks.

1 Introduction

Cartesian Genetic Programming is a graph based representation that has many
benefits over traditional tree based methods, including bloat free evolution and
faster evolution through neutral search. In this paper we apply this represen-
tation to a robot control task. In this section the representation is discussed -
including a comprehensive survey of existing work on Cartesian Genetic Pro-
gramming(CGP) and we look at previous work in evolving robot controllers
using genetic programming. We describe the benefits of this representation over
traditional techniques. The algorithm and novel fitness function are discussed in
section 2. In section 3 we apply apply CGP to various robot tasks and demon-
strate generality in evolved solutions.

1.1 Cartesian Genetic Programming

Cartesian Genetic Programming [13] is a graph based form of Genetic Program-
ming that was developed from a representation for evolving digital circuits [7, 8].
In essence, it is characterized by its encoding of a graph as a string of integers
that represent the functions and connections between graph nodes, and pro-
gram inputs and outputs. This gives it great generality so that it can represent
neural networks, programs, circuits, and many other computational structures.
Although, in general it is capable of representing directed multigraphs, it has so
far only been used to represent directed acyclic graphs. It has a number of fea-
tures that are distinctive compared with other forms of Genetic Programming.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 62–73, 2005.
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Foremost among these is that the genotype can encode a non-connected graph
(one in which it is not possible to walk between all pairs of nodes by following
directed links). This means that it uses a many-to-one genotype-phenotype map-
ping to produce the graph (or program) that is evaluated. The genetic material
that is not utilised in the phenotype is analogous to junk DNA. As we will see,
mutations will allow the activation of this redundant code or de-activation of it.
Another feature is the ease with which it is able to handle problems involving
multiple outputs. Graphs are attractive representations for programs as they are
more compact than the more usual tree representation since subgraphs can be
used more than once.

CGP has been applied to a growing number of domains and problems: digital
circuit design [11, 12], digital filter design [8], image processing [21], artificial life
[20], bio-inspired developmental models [9, 14, 10], evolutionary art [1], molecular
docking [4] and has been adopted within new evolutionary techniques cell-based
Optimization [19] and Social Programming [24]. In addition a more powerful
form of CGP with the equivalent of Automatically Defined Functions is also
being developed [25].

Figure 1 shows the general form of Cartesian Program for an n input m-
output function. There are three user-defined parameters: number of rows (r),
number of columns (c) and levels-back (which defined how many columns back a
node in a particular column can connect to). Each node has a set of Ci connection
genes (according to the arity of the function) and a function gene fi which defines
the nodes’s function from a look-up table of available functions. On the far left
are seen the program inputs or terminals and on the far right the program output
connections Oi

Fig. 1. General form of Cartesian Program

If the graphs encoded by the Cartesian genotype are directed (as in this work)
then the range of allowed alleles for Ci are restricted so that nodes can only
have their inputs connected to either program inputs or nodes from a previous
(left) column. Function values are chosen from the set of available functions.
Point mutation consists of choosing genes at random and altering the allele to
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another value provided it conforms to the above restrictions. Although the use
of crossover is not ruled out, most implementations of CGP (including this one)
only use point mutation.

We emphasize that there is no requirement in CGP that all nodes defined
in the genotype are actually used (i.e. have their output used in the path from
program output to input). Although a particular genotype may have a number
of such redundant nodes they cannot be regarded as non-coding genes, since
mutation may alter genes “downstream” of their position that causes them to
be activated and code for something in the phenotype, similarly, formerly active
genes can be deactivated by mutation. We refer genotypes with the same fitness
as being neutral with respect to each other. A number of studies (mainly on
Boolean problems) have shown that the constant genetic change that happens
while the best population fitness remains fixed is very advantageous for search
([13, 23, 26]).

1.2 Obstacle Avoiding Robots

A common test problem in genetic programming involves generating a program
that can control a robot. Typically, the task is to travel around a closed envi-
ronment avoiding the walls and any obstacles [6, 2, 15, 3, 16, 17, 22, 18]. The task
may be extended to getting the robot to cover as much floor space as possible or
to follow the wall. In this scenario the robot has to navigate around an unknown
environment avoiding contact with the walls. The control system is able to use
the distance sensors on the robot, perform some form of signal processing and
in turn control the motion of the robot. Two common robotic platforms are the
Khepera miniature robot or a gantry style robot, such as those from iRobot.
Both of these types of robots have an array of distance sensors. The Khepera
has 8 short range infra red sensors, the gantry robot because of its larger size can
accommodate 24 sonar sensors. Generally evolution is performed in simulation.
Solutions based on genetic programming and neural network architectures can
be run in faster than real time in simulation, as they can ignore (to a degree)
the physical properties of the robot and its hardware. A simple obstacle avoiding
robot was evolved by Koza in [5]. In this task, a robot had to move around an 8
by 8 grid and avoid obstacles - in order to mop the floor of a room. The obstacles
were cells in the grid that the robot was not allowed to enter. The robot is able
to move forward one cell, leap forward several cells, turn left, check to see if an
obstacle is directly in front and addition (with modulo 8 integer arithmetic). The
fitness was calculated as the number of squares visited in a fixed period of time.
Without the use of automatically defined functions (ADFs), it took fewer than
50 generations to evolve a successful behaviour, with ADFs this result was low-
ered to 29 generations. However, Koza uses relatively large populations - in this
example each population contained 500 individuals. The function set available
to the system was quite basic. Lazarus and Hu also used a grid based system
to evolve robot controllers. In [6] Lazarus and Hu evolved wall following robots,
that could find, then move around the edge of a room. The room was a square
room, with a number of extrusions in the walls. The most complex map had
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four extrusions - where each wall was interrupted by a section projecting into
the centre of the room. The program could move the robot to adjoining cells and
sense the state of those cells. To process the sensor information, the function set
included IF, AND, OR and NOT. Using a population of size 1000, solutions for
the most complex room were evolved in 90 generations. In [16] Reynolds uses
genetic programming (GP) to evolve a program that can take visual information
and control a simulated robot that avoids obstacles. The input to the program
was a simple sensor that measures how strongly an object is seen in a particular
direction. This information is then processed using basic mathematical opera-
tions and conditionals. The program output allowed the robot to drive forward
and turn. In this example, the robot was simulated, however, in [15] this style of
control was used to control a real robot. The input terminals were readings from
the distance sensors of the Khepera robot. In [3], Ebner evolves a controller for
a gantry style robot using genetic programming. The distance readings from 24
sensors were mapped into 6 virtual sensors and these were used as terminals in
the GP program. Output terminals for movement are restricted to go forward,
stop and turn. To allow for the evolution of a hierarchical control mechanism the
program could make use of conditional statements, which allows for greater pro-
gram complexity. The task was to navigate around a short stretch of a straight
corridor without colliding with the walls. With the robot running in simulation,
evolution was performed for 50 generations on a population of 75 individuals.
When the process was moved into a physical robot, evolution took a long time
(197 hours) and produced similar results to the simulated work. In [15], Nordin
and Banzhaf apply genetic programming to evolving robot controllers in a real
environment. The program was encoded as a binary string and evolved using
a standard genetic algorithm The function set comprised of ADD, SUB, MUL,
SHL, SHR, AND, OR, XOR and integer terminals. A population size of 30 was
used, and successful individuals were found within 200 to 300 generations. A
pleasure-pain fitness function was used. The robot received pleasure from go-
ing straight and fast, and pain from coming close to the obstacles. The scores
from this pleasure/pain reward are then weighted and summed to produce an
overall fitness. In this work, we present a robot, with fine grained control, sev-
eral environments of greater complexity to those described above. We show that
CGP is suitable for controlling the robot, and that the results are competitive
to previous techniques.

2 Algorithm

2.1 The Robot

The simulated robot used in this set of experiments is similar to a Kephera robot.
There are two wheels driven by motors, these motors can turn in either direction
and are variable speed. Driving both motors in the same direction (and speed)
moves the robot forward or backward in a straight line. By using different speeds
the robot can be made to turn, turning motors in opposite directions increases
the turning speed. The robot is equipped with two distance sensors mounted
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on the front, which are separated by an angle of 20 degrees. The sensors return
the distance to the nearest wall in the direction they are pointed. There is no
grid representation used in this simulation (other than for the fitness function),
and the robot can move anywhere to within the resolution of double precision
floating point numbers. The robot’s orientation is also defined by a real number.

2.2 Function Set

For these experiments we use an integer version of CGP, in which the nodes
operate on signed integer values and output signed integer values. The levels
back parameter has been set for the whole width of the graph, and multiple
rows are used. The nodes in the CGP graph can use the following functions:
Add, Subtract, Multiply, Divide, Compare, Min, Max, Fixed integer and Input
node. Add, subtract, multiply and divide are all two input nodes that perform
integer arithmetic. The divide function performs integer division and is safe:
dividing by 0 returns 0. Min and max respectively output the minimum and
maximum of the two inputs to that node. Compare returns -1 if the first input
is less than the second, 0 if the inputs are equal and +1 if the first input is
larger than the second. Some nodes can store a fixed integer in the range -100
to +100. These are terminal nodes, i.e. nodes with no inputs. The first column
in the CGP graph is made of input nodes. The speed used to drive the motors
was taken from 2 nodes on the last column in the graph. The integer value for
each node was found, truncated to fall between -100 and 100 and then scaled to
a value between -1 and +1.

2.3 Operators, Parameters and Fitness Function

The evolutionary algorithm used for these experiments is very simple. The popu-
lation size was set to 40 individuals. Elitism was used, with the best 5 individuals
retained for the next generation. Tournament selection was used, with a tourna-
ment size of 5. No crossover was used when generating subsequent populations.
Mutation was set to 5 percent of the node count, with entire nodes being mu-
tated in each operation. Evolutionary runs were limited to 1000 generations,
with each run being aborted when a solution was found i.e. when an individual’s
fitness was greater than 9995. For these experiments, the CGP graph was set to
20 nodes wide by 2 nodes tall. The first column of the graph is used for input
nodes, leaving 38 nodes to perform processing. Typically for obstacle avoiding
robots, fitness values are computed based on factors such as time spent mov-
ing forward, total path length and Euclidian distance travelled. For example,
Thompson[22] uses the following calculation:

fitness =
1
T

∫ T

0

(
e−kxcx(t)2 + e−kycy(t)2 − s(t)

)
where s(t) =1 when stationary

0 otherwise

where the distance of the robot from the centre of the room in the x and y
directions at time t was cx and cy, for an evaluation for T seconds. However,
during initial experiments it appeared that this method for calculating fitness
had many drawbacks including local minima which resulted in poor evolutionary
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characteristics (e.g. mean fitness did not increase smoothly). In environments
with obstacles this style of fitness function fails to capture the difficulty of getting
to hard to reach locations in the map. To address this a fitness map of the
environment was calculated, where each area in the map had an absolute measure
of the difficulty in reaching that point. The fitness for the robot was calculated
as the highest fitness measure seen during the robot’s movement around the
map. The calculation for this fitness map was performed by modeling chemical
diffusion within the environment. If we imagine the room to be filled with a
fluid such as water, and then add some coloured ink in a particular location,
the colour would diffuse through the water. Near the point where the dye was
added, the concentration would be greatest, the further away from the source
the lower the concentration. The actual concentration (after a period of time)
at a point is related to the shortest possible path to the point where the dye
was added. Using a model of diffusion, we can easily approximate the shortest
path required to reach any point in the map. This model automatically takes
into account any shape of environment and the obstacles within it. By adding a
”dye” at the starting position of the robot, and allowing it to diffuse until the
chemical level at all points in the map is above 0 percent, an absolute fitness
can be calculated for the map.

Fig. 2. Plot of fitness against distance from start position. The gradient on the right
can be used a key for figures 4 and 6

The diffusion algorithm works by breaking the map area into a grid (in this
experiment of size 500 x 500) which stores the amount of chemical in each part
of the map, initially all cells are set to 0. The diffusion is calculated using a
simple cellular automata style technique. For each cell, if the average amount of
chemical in its eight neighbouring cells is greater than the amount in that cell
then the amount of chemical in the cell is increased. When all the cells contain
some chemical, the map is normalised so that the fitness score falls between 0 and
10000, with 10000 being the maximum fitness. Figure 2 shows the relationship
between fitness and distance from the starting position. The gray-scale gradient
on the right shows the colour corresponding to the fitness value, and is used in
the fitness maps throughout this paper. Figures 4 and 6 show the fitness maps
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for the two environments used. The darker colours show the areas of greatest
difficulty to reach from the robots starting position in the top left corner. Robots
that can successfully navigate around the obstacles, and explore large amounts of
the map will pass through areas marked as having high fitness. Solutions where
the robot does not move far or travels in a circle will obtain low fitness. In these
experiments the robots were allowed to travel until they collided with a wall, or
a timeout situation occurs i.e. the simulation has been updated 10000 times.

Fig. 3. Map 1 Fig. 4. Fitness values for map 1

Fig. 5. Escape Map Fig. 6. Fitness values for the escape map

3 Experiments

3.1 Escaping a Room

The first problem involves the robot escaping from a small room. Figure 5 shows
the layout of the room, with the robot starting in the centre of the map. It
should be noted that all the map images are drawn to the same scale.

Results. 140 runs of the algorithm were performed, with 81% of evolutionary
runs providing a solution within 1000 generations. We found the average number
of evaluations required for a solution to be 8515, however the standard deviation
was high (8091) - the minimum time to discover a solution was 8 generations. On
reviewing some of the paths taken by the robot, it was seen that some became
stuck in the bottom part of the maze. As the population converged, it would
have become harder to escape this local optimum. With the neutrality in CGP,
the represenation is more robust to this type of situation - even in converged
populations, small mutations can produce large changes in phenotypic behaviour.
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In this problem scenario, it is expected that there are many local optima, and
with the high success rate it is clear that CGP is capable of escaping these.

The following is a sample program for a good solution. Motor1 and motor2
are the motor speeds of the left and right motors. INPUT 0 and INPUT 1 are the
two distance sensor readings. The remaining functionality is described previously.
An interesting observation from this is the reuse of the node -25. A non-graph
based representation would not easily allow for this and would have to replicate
the node. But here GCP can reuse nodes, and share subgraphs that are integral
to the behaviour of both motor controllers. In the motor1 control program, it
appears evolution has used this node to manufacture a 0 rather than evolve a
integer node with a value of 0.

motor1= ADD(MINUS(-25 , -25), MULT(ADD(INPUT_0, -25),
MIN(INPUT_1, INPUT_0)))

motor2=ADD(MINUS(ADD(INPUT_0, MAX(MIN(MIN(INPUT_1, INPUT_0),
MIN(INPUT_1, INPUT_0)), -25 ), 18), MINUS(MIN(INPUT_1, INPUT_0),
MIN(ADD(MINUS(INPUT_0, INPUT_0), MULT(MAX(MIN(MIN(INPUT_1, INPUT_0),
MIN(INPUT_1, INPUT_0)), -25), MAX(MIN(MIN(INPUT_1, INPUT_0),
MIN(INPUT_1, INPUT_0)), -25))), ADD(INPUT_0, -25))))

If we take the above programs and turn them into a more human readable
form, we find the following rules have been evolved.

IF INPUT_0 <= INPUT_1 THEN
motor1 := INPUT_0 ( INPUT_0 - 25 )

ELSE
motor1 := INPUT_1 ( INPUT_0 - 25 )

ENDIF

IF INPUT_0 <= INPUT_1 THEN
motor2 := (2 * INPUT_0) - 43

ELSE
IF (INPUT_1 ^ 2) <= (INPUT_0 - 25) THEN

motor2 := INPUT_0 + (2 * INPUT_1) - (INPUT_1 ^ 2) - 18
ELSE

motor2 := (2 * INPUT_1) - 43
ENDIF

ENDIF

The program for motor1 is very simple. If INPUT 0 detects a wall, then the
speed of the motor is negative - and the robot will start to turn. Otherwise the
motor is on in a forward direction. For motor2 the program is slightly more
complex. However, it still has the same basic functionality - the motor speed
is dependent on the value of sensor that is nearest the wall. However, motor2
appears to have it’s speed regulated to ensure that in general it is going forward,
and to slow down when INPUT 1 detects a wall. This code demonstrates a
sophistication beyond the binary control of Braitenberg type vehicles - in this
result the robot speeds up and slows down depending on the current state of its
sensors.
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Fig. 7. Evolutionary history of maze solving behaviour

Fig. 8. Distribution of peak fitness scores during evolution, for the initial maze problem
(figure 3)

3.2 Solving a Maze

The challenge in this scenario is for robot to solve a complicated maze. The
maze, shown in figure 3 has many tight u-bends which are placed at different
orientations. Figure 4 shows the fitness scores throughout the map.

Out of 140 runs, 51% of the runs produced individuals with perfect fitness.
For each run the maximum fitness obtained and the number of evaluations re-
quired to reach that fitness were logged. The average fitness evolved was 8722
(with a standard deviation of 1635). Figure 8 shows the distribution of fitness
scores, and from these results we can see that the least successful robots all man-
aged to make their way around the first bend before crashing or looping back on
themselves. The range 6500-7000 contains 26 individuals. Based on their average
fitness of 6932, we can see that the robots fail to navigate into the second half of
the map - where the walls change from vertical to horizontal. The ability to see
where the local optima are is a useful feature of the fitness function. Without hav-
ing to plot all the runs onto a map and observing where the robot becomes stuck,
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we can use the absolute fitness values on the fitness map to locate any trouble
spots in the environment.

3.3 Generalisation of Evolved Behaviour

It is important to demonstrate that the solutions evolved generalise to different
starting conditions. In this experiment we perform two tests for generalisation.
In the first, evolution is allowed to solve the maze problem and on success the
evolved program is tried from a different starting position. The second starting
position is on the right hand side of the map, half way down. The fitness map
for this starting condition is shown in figure 9 - the point of highest fitness is
now in the top left of the map.

Fig. 9. Fitness values for the maze - start-
ing at different location

Fig. 10. Solution to the reverse maze prob-
lem

Fig. 11. Fitness values for the unseen
environment

Fig. 12. Example behaviour of robot in
unseen enivronment

In the second test the robot is evolved to solve the original maze, and then
is put into a different environment, the map with fitness values is shown in
figure 11. The maze incorporates features not seen in the previous maps - e.g.
walls at angles. In both these scenarios the second test is performed as soon as
a solution for the first map has been evolved. We do not allow further evolution
to occur.
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For the first test of generalisation, from 70 evolutionary runs it was found
that 97% of programs that evolved to solve the first map successfully completed
the maze when started from a different location. With the new environment,
91% of programs that can complete the first maze can fully explore the second
maze. This shows that the evolved programs have achieved a high degree of
generalisation.

4 Conclusions

This work has demonstrated the suitability of CGP for control applications.
Although it is most often misleading to directly compare results (because of
different simulators, environments and methodologies), the results indicate that
CGP is highly competitive when compared to previous results using traditional
GP. In future work we hope to use CGP to control a physical robot, and to
perform the entire evolutionary algorithm in hardware. Currently, we are working
on an FPGA implementation of the algorithm, which could be used with the
Kephera robots.
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Abstract. A protein is a linear chain of amino acids that folds into a unique func-
tional structure, called its native state. In this state, proteins show repeated sub-
structures like alpha helices and beta sheets.  This suggests that native structures 
may be captured by the formalism known as Lindenmayer systems (L-systems). 
In this paper an evolutionary approach is used as the inference procedure for 
folded structures on simple lattice models. The algorithm searches the space of L-
systems which are then executed to obtain the phenotype, thus our approach is 
close to Grammatical Evolution. The problem is to find a set of rewriting rules 
that represents a target native structure on the lattice model. The proposed ap-
proach has produced promising results for short sequences. Thus the foundations 
are set for a novel encoding based on L-systems for evolutionary approaches to 
both the Protein Structure Prediction and Inverse Folding Problems. 

1   Introduction 

The Protein Structure Prediction Problem (PSP) is among the most outstanding open 
problems in Biochemistry. A successful approach for efficient and accurate prediction 
would hasten a new era for biotechnology. A protein is as a linear sequence of units, 
called amino acids, that under certain physical conditions folds into a unique func-
tional structure known as the native state or tertiary structure. This native state is the 
key to understanding a proteins’ functionality in a living organism as an enzyme, a 
storage, transport, messenger, antibody, or regulation molecule. The simplest models 
for studying the properties of protein folding and structure prediction are based on lat-
tices (of 2 or 3 dimensions), these models capture the essential aspects of the folding 
process while keeping low computational costs. The on-lattice hydrophobic-
hydrophilic (HP) model, assumes the hydrophobic effect of amino acids as the main 
force governing  folding. 

The correspondence between amino acids and positions within a lattice is called 
embedding of the protein. It was shown that finding the embedding of a protein is  
NP-hard even for very simple lattice models [7,33]. Thus, the use of heuristics and 
approximation algorithms became the most promising approach for the PSP. In par-
ticular, several evolutionary algorithms have been suggested for solving this problem 
[12,18,19,27,34]. All these approaches employ a direct encoding of the folded chain 
(See Section 2).  
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This paper suggests a novel encoding scheme for the PSP based on Lindenmayer 
systems. The rationale for this is twofold: 

1. A protein structure often exhibits a high degree of regularity, with a wealth of 
secondary structures, preferred motifs, and tertiary symmetries [8]; also, pro-
teins have been compared to fractals [32]. This is consistent with the recursive 
nature of L-systems where rewriting rules lead to modular, auto-similar struc-
tures. 

2. It is not clear that the encoding currently used in evolutionary algorithms for 
HP models, namely, internal coordinates (see section 2.1) are suitable for cross-
over and building block transfer between individuals [4,15,16]. 

An evolutionary algorithm is proposed as the inference procedure for folded struc-
tures under the HP model in 2D lattices. The problem is to find a set of rewriting rules 
(an L-system) that captures a target folded structure (which represents the native 
state for a given protein) on the selected lattice model.  

Evolutionary algorithms have been successfully applied to a variety of design 
problems, but it is not clear whether evolutionary techniques can scale to the com-
plexities of real world designs. It has been argued that a generative or grammatical 
encoding scheme, (i.e. an encoding that specifies how to construct the phenotype, in-
stead of a direct encoding of the phenotype) can achieve greater scalability through 
self-similar and hierarchical structure [1,2,10].  Moreover, by reusing parts of the 
genotype while generating the phenotype, a generative encoding is a more compact 
encoding of a solution. These approaches to encoding have had an enormous success; 
we point the reader to [25,30,31] for a general overview of grammatical evolution and 
to [26] for an application of grammatical evolution to a problem related to the one we 
focus on here. 

L-systems as a generative encoding have been used in previous applications of 
evolutionary algorithms to problems in biology, medicine, engineering, and computer 
graphics. The production of plant structures [3,6,13,24,28] has been the most studied 
case; where results have shown the usefulness of this encoding, both to obtain struc-
tures resembling natural organisms, and in the generation of artificial designs with 
novel features. Furthermore, L-systems grammars have proved to be a powerful geno-
type encoding to represent blood circulation of the human retina [14], physical design 
of tables, robots, and virtual creatures [9,11], and in the design of transmission towers 
[29]. 

We proceed as follows: Section 2 provides the theoretical basis of the PSP; section 
3 describes the mathematical formalism of L-systems. The proposed approach is  
presented in Section 4. Section 5 describes the experiments and results; and finally 
section 6 concludes and comments on future work. 

2   The Protein Structure Prediction Problem Simplified 

Proteins are the building blocks and functional units of all biological systems. There 
are 20 naturally occurring amino acids that make up protein chains.  The amino acid’s 
chain of a protein is known as its primary structure and usually contains about 30 to 
400 acids. The primary structure folds in space and forms secondary structures. These 
secondary structures present specific signatures like α-helices and β-sheets. In turn, 
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secondary motifs fold yet again and aggregate in space giving raise to a 3D conforma-
tion, the tertiary structure. The tertiary structure conforms a very specific geometric 
pattern (the native state).  

2.1   The HP Model 

In the HP model [5], only two types of monomers are distinguished: hydrophobic (H), 
and polar or hydrophilic (P). The hydrophobic monomers tend to occupy the center of 
the protein, staying close to each other to avoid surrounding water, whereas the polar 
residues are attracted to water and are frequently found on the convex hull of the na-
tive state. The set of valid protein structure conformations is the space of all self-
avoiding paths (on a selected lattice, e.g., square 2D, triangular, cubic, diamond, etc.), 
with each amino acid located on a lattice bead.  Hydrophobic units that are adjacent in 
the lattice but non-adjacent in the sequence (also called non-local H-H contacts) add a 
constant negative factor (generally ε=-1) and all other interactions are ignored.  The 
native state is thought to be the global energy minimum. 

In the HP model, the structures can be represented by Cartesian coordinates, inter-
nal coordinates or distance geometry. We concentrate here on internal coordinates, 
which can be defined as absolute or relative. Under the absolute encoding, the struc-
tures are represented by a list of absolute moves. In a 2D square lattice, for example, a 
structure s is encoded as a string s = {Up, Down, Left, Right}+ . When using a rela-
tive coordinates, each move is interpreted in terms of the previous one, like in LOGO 
turtle graphics; a structure s is encoded as a string s = {Forward, TurnLeft, Turn-
Right}+. Designing with black the hydrophobic residues and white the polar ones, the 
structure of Figure 1 is coded either as s =RDDLULDLDLUURULURRD (absolute 
encoding) or s = RFRRLLRLRRFRLLRRFR (relative encoding), with 9 non-local H-H 
contacts. 

 
Fig. 1. Native structure in the square 2D lattice for the primary sequence 
HPHPPHHPHPPHPHHPPHPH. The arrow indicates the starting point, and the dotted lines the 
non-local H-H contacts 

3   L-Systems  

Aristid Lindenmayer (a biologist) proposed in 1968 an axiomatic foundation for bio-
logical development called L-systems [21]. More recently, L-systems have found sev-
eral applications in computer graphics [28]; two principal areas include generation of 
fractals and realistic modeling of plants. Central to L-systems, is the notion of rewrit-
ing, where the idea is to define complex objects by successively replacing parts of  
a simple object using a set of rewriting rules or productions. The rewriting can be  
carried out recursively. The most extensively studied and best understood rewriting 
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systems operate on character strings. The essential difference between the most 
known Chomsky grammars and L-systems lies in the method of applying productions. 
In Chomsky grammars productions are applied sequentially, whereas in L-systems 
they are applied in parallel, replacing simultaneously all letters in a given word. This 
difference reflects the biological motivation of L-systems. Productions are intended to 
capture cell divisions in multicellular organisms, where many divisions may occur at 
the same time. 

3.1   D0L-Systems 

The simplest class of L-systems is the D0L-systems (deterministic and context free). 
To provide an intuitive understanding of the main idea, let us consider the example 
given by Prusinkiewicz and Lindenmayer [28] (See Figure 2.). 
 

“Lets us consider strings built of two letters a and b (they may occur many times in 
a string). For each letter we specify a rewriting rule. The rule a  ab means that the 
letter a is to be replaced by the string  ab, and the rule b  a means that the letter b 
is to be replaced by a. The rewriting process starts from a distinguished string 
called the axiom. Let us assume that it consist of a single letter b. In the first deriva-
tion step (the first step of rewriting) the axiom b is replaced by a using production b 

 a. In the second step a is replaced by ab using the production a  ab. The word 
ab consist of two letters, both of which are simultaneously replaced in the next 
derivation step. Thus, a is replaced by ab , b is replaced by a, and the string aba re-
sults. In a similar way (by the simultaneous replacement of all letters), the string 
aba yields abaab which in turn yields abaababa, then abaababaabaab, and so on.” 

 
b 
| 
a 
_| 

a b 
_| | 

a b a 
__| | |__ 
a b a a b 

_| / __| |__ \ 
a b a a b a b a 

 
Fig. 2.  A D0L-system derivation example 

4   Method 

Our proposed approach uses an evolutionary algorithm that, given a target structure in 
internal relative coordinates (input), will evolve an L-system L (output) that, once 
evaluated, would produce a string  that matches the original target. For instance, the 
end-product of the EA run for  the structure in  Figure 1 would be an L  whose ter-
mination word is RFRRLLRLRRFRLLRRFR. 

A generational EA with linear ranking selection and elitism was used to evolve sets 
of rewriting rules or L-systems that capture a target structure. As the variation opera-



78 G. Escuela, G. Ochoa, and N. Krasnogor 

 

tors, a recombination and three mutation operators were implemented.  Two stopping 
criteria were considered: (i) if an individual arises the maximum fitness, that is, its L-
system grammar exactly represents the target folding; and (ii) a predefined maximum 
number of generations is reached. The genotype encoding, initial population, genetic 
operators, and fitness evaluation are described below. Furthermore, the specific  
values for the various algorithm’s parameters used in the experiments, are listed in 
Section 5. 

4.1   Genotype Encoding and Initial Population 

The L-system’s alphabet will depend on the lattice and coordinate system used.  For 
the experiments reported here, we selected the square 2D lattice with relative coordi-
nates. Thus, the terminal characters are the symbols {F, L, R}. 

Genotypes are encoded using D0L-systems with the following characteristics: 

Alphabet: Σ=Σt ∪ Σnt  where Σt={F,L,R} terminal characters and 
Σnt={0,1,2,...,m-1} non-terminal characters 

representing rewriting rules 
 Axiom:  = S  S ∈ Σ+  

 Rewriting rules:   W0,1,2,...,m-1: w, where w ∈ Σ+  

A string representing the axiom, the number of rewriting rules and the strings rep-
resenting each rule, determine the genotype of an individual. The maximum lengths 
of the axiom and rules, as well as the number of rules are parameters that will depend 
on the length of the original folding. As the maximum values are held as parameters, 
the specific values for each individual within a population may differ.   

Let max_r, max_la, and max_lr be the maximum number of rules, and maximum 
string lengths for the axiom and production rules respectively; an individual of the ini-
tial population is generated as follows: the number of rules is randomly selected in the 
range 1 to max_r, this define the non-terminal characters allowed for the individual. 
The axiom is a randomly generated string of symbols of maximum length max_la 
where each symbol is selected with uniform distribution from the alphabet Σ. Thereaf-
ter, each rule is generated in a similar way as the axiom, with a maximum length of 
max_lr. 

4.2   Genetic Operators 

Recombination takes two individuals, p1 and p2 as parents and creates one offspring, 
o, by copying the axiom of p1 and selecting rules from either p1 or p2 with a prob-
ability of 0.5; this recombination operator resembles uniform crossover, where the in-
terchanged genes are complete rules. To maintain consistency, if a selected rule to 
conform o makes reference to a symbol (rule) not defined in o, then a repair operator 
changes that symbol for a suitable symbol (either terminal or non-terminal). Fig. 3 
shows an example of how this operator is applied. 
     A mate selection strategy (dissasortative mating) was also implemented as a 
mechanism for increasing the population genetic diversity. Dissasortative mating was 
implemented as follows: when selecting two individuals for a crossover,  the  first  par 
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Fig. 3. Genotype, phenotype and fitness from parents and offspring in a recombination where o 
inherits the rules 0,1 from p1 and 2,3 from p2 

 
ent was selected as usual. To chose the second parent, a set of s (scan size) individu-
als were selected using the GA fitness-based selection method. Thereafter, the simi-
larity between each of these s phenotypes and the first parent was computed, the phe-
notype with less similarity was chosen. For the experiments reported here, Hamming 
distance was used as the similarity measure, and the scan size s was set to 5. 

Three mutation operators were implemented that perform: (i) addition, (ii) deletion, 
or (iii) modification of a single symbol that conforms either the axiom or the rewriting 
rules of each individual. When a mutation is to be performed, 60 % of times it will be 
a modification, 30 % an addition, and 10 % deletion. 

4.3   Derivation Process, Post-processing and Fitness Calculation 

For computing an individual’s fitness, its L-system is derived. That is, starting from 
the axiom, the rewriting rules are applied in a parallel and iterated way, until either 
the number of terminal characters becomes equal to or greater than the string length 
of the target folding; or no more non-terminal characters are present in the string. 
Thereafter, a post-processing phase prunes the non-terminal symbols in the string to 
produce the phenotype. The fitness value will be the number of matches between the 
produced phenotype and the target folding, that is a generalized Hamming distance. 
So, the minimum fitness is 0 and the maximum is the length of the desired folding.  

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 4. Example of a derivation process 

RFLRLLRLRRFRLLRRFL RFRRLLLRLLRLRRFRL RFRRLLRLRRFRLLRRFR 

p1 

axiom= R2 
rules={0:R03F; 1:R01L; 
           2:F310; 3:LRL3} 

fitness= 16 fitness=7

+ p2 

axiom= R2 
rules={0:R023; 1:01L3; 
          2:F310; 3:R3L1} = o

axiom= R2 
rules={0:R03F; 1:R01L; 
          2:F310; 3:R3L1} 

fitness=18

31 

R0RL RFR1 

RFR R0RL R 3LL2 RL 

RFRR 3LL2 RL R RFR1 LL RRF RL 

RFRRLLRLRRFRLLRRFR 

axiom 

1st step 

2nd step 

3rd step 

post-processing 

axiom= 31 
rules={0:3LL2; 1:R0RL; 2:RRF; 3:RFR1} 

phenotype 
fitness= 18 

genotype 

3 1

1 0

0 3 2
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Figure 4 illustrates the derivation process for an individual (Solution 1 of Table 3) 
Three derivation steps,  and the final result after a post-processing stage, are shown.  
In this case, the phenotype matches exactly  the target RFRRLLRLRRFRLLRRFR. 

5   Experiments and Results 

We selected four protein instances from the HP benchmark available at 
http://www.cs.nott.ac.uk/~nxk/hppdb.html. Thereafter, their foldings embedded in the 
2D square lattice with relative coordinates, were found using MAFRA (Memetic Al-
gorithm FRAmework) [17]. Each of the obtained foldings was set as the target for our 
evolutionary approach, using the parameters listed in Table 1. 

Table 1. Parameter values used for the experiments 

Parameter Value 
Max. Number of Generations 2000 

Population Size 50 
Mating Strategy Disassortative 5 

Mutation rate (per symbol)  Axiom 0.05 
Mutation rate (per symbol)  Rules 0.05 

Recombination rate 1.00 
Max. Number of Rules 4-5 
Max. Length for Axiom 3 
Max. Length for Rules 5 

 
Table 2 summarises the results obtained for the selected four instances. The num-

ber of successes (runs that produced the target folding exactly) out of 50 runs, and a 
selected solution (L-system) are shown for each instance. 

 
Table 2. Results for 4 instances (50 runs each) 

Instance Length Successes One Solution 

HPHPPHHPHPPHPHHPPHPH→ 
RFRRLLRLRRFRLLRRFR 

18 5/50 (4 rules) See Table 3 

HHHPPHPHPHPPHPHPHPPH → 
RRFRFRLFRRFLRLRFRR 

18 3/50 (4 rules) axiom = R2 
4 rules = {0:RLR; 
1:3F32L; 2:1FR33; 
3:R102} 

HHPPHPPHPPHPPHPPHPPHPPHH → 
RLLFLFFRRFLLFRRLRFFRRF 

22 0/50 (4 rules) 
1/50 (5 rules) 

axiom = 1R 
5 rules = { 0:4LF3; 
1:RL243; 2:00F3; 
3:RRFL; 4:0R14F} 

PPHPPHHPPPPHHPPPPHHPPPPHH → 
FFRRFFFLLFFFFRRFFFFLLFF 

23 1/50 (5 rules) axiom= 32 
4 rules = {0:20R2; 
1:132F; 2:FF012; 
3:0FLL} 
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Table 3. Some results obtained for the folding RFRRLLRLRRFRLLRRFR 

Solution Axiom Rewriting rules 
1 31 0:3LL2 1:R0RL 2:RRF 3:RFR1 
2 31 0:3L23 1:R0L1 2:1LR 3:RFR1 
3 31 0:3LLR 1:R02L 2:23 3:RFR1 
4 021 0:1R2LR 1:R1F1R 2:1LLR1  
5 11 0:2210L 1:RF30R 2:LR2 3:RRL 

6 (bs) 01F 0:RFR1 1:2L2 2:R0L  
7 RF3 0:3RFR 1:312L (nu) 2:RRLLR 3:20L0R 
8 RF3 0:R3L0 1:0L2R1 2:231RF 3:0R20L 
9 RF0 0:R1LL0 1:0R2FR 2:LRR  

10 RF2 0:12RR0 1:RLL3R 2:R1F0 3:RL12R 
11 12 0:RL10 1:RF2R 2:30L3L 3:12R1 
12 30 0:RFR10 1:LL3R 2:3F13 (nu) 3:0R1LR 
13 30 0:R32 1:01L2 2:030R 3:RFR1L 

(bs: best solution, since it has fewer and shorter rules) 
(nu: not used) 

 

Table 3 shows results for the first target folding (length 18). Several L-systems (of 
3 and 4 rules) that successfully capture the folded structure were found by the evolu-
tionary algorithm.  Some solutions (7 and 12) evolved rules that were not used in the 
derivation process. We distinguished solution 6 as the best obtained in this set, since it 
has fewer and shorter rules. Notice that some substrings that appear several times in 
the folded chain (e.g. RFR) also are present as part of the evolved rules. This supports 
the idea that the L-system captures the natural occurring substructures in the protein. 

 
Fig. 5. Evolutionary progression towards the target structure (1st instance in Table 2) 
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     Figure 5 shows the progression towards the target structure (1st instance in Table 2) 
as generations go by. The axiom, rules, fitness value, internal coordinates word, and 
graphical representation are displayed. 

We would like to note that during the EA run, the production of illegal (not self-
avoiding) structures was allowed (see for example the structure in generation 1 and 
100 in Fig.5). However a successful L-system is only accepted when it is fully  
self-avoiding (like in generation 305). Also note that a given target structure may 
have various internal coordinates’ representations (modulus rigid rotations), and that 
various distinct L-systems could produce the same internal coordinates word.  

It is worth mentioning that the level of difficulty for evolving an adequate L-
system widely varies with the instance selected. Additional to the folding’s length; 
some instances seem more difficult than others. Our intuition is that the level  
of modularity and repetition within the protein folding varies across the space of  
possible structures. 

6   Discussion 

An evolutionary algorithm discovered L-systems that capture a target folding under 
the HP model in 2D lattices. These promising results set the foundations of a novel 
generative encoding for evolutionary approaches to both the protein structure predic-
tion problem and inverse protein folding problem. We suggest that a generative en-
coding (i.e. a developmental approach for producing structures using a set of gram-
matical rewriting rules – L-system) may have better scaling properties than the direct 
internal coordinates encoding [1,2,10]. As noted in the previous section there are sev-
eral symmetries that could be explicitly handled as to enhance the evolutionary 
search. Further work should test this hypothesis. Longer chains and 3D lattices should 
also be explored. The final goal will be to use an evolutionary approach with an L-
system’s encoding to solve challenging instances of the protein structure prediction 
and to evolve primary sequences which fold to specific native states (inverse folding).  
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Abstract. We describe a novel method for using Genetic Programming to 
create compact classification rules based on combinations of N-Grams 
(character strings).  Genetic programs acquire fitness by producing rules that 
are effective classifiers in terms of precision and recall when evaluated against 
a set of training documents.  We describe a set of functions and terminals and 
provide results from a classification task using the Reuters 21578 dataset.  We 
also suggest that because the induced rules are meaningful to a human analyst 
they may have a number of other uses beyond classification and provide a basis 
for text mining applications. 

1   Introduction 

Automatic text classification is the activity of assigning pre-defined category labels to 
natural language texts based on information found in a training set of labelled 
documents.  In recent years it has been recognised as an increasingly important tool 
for handling the exponential growth in available online texts and we have seen the 
development of many techniques aimed at the extraction of features from a set of 
training documents, which may then be used for categorisation purposes.   

In the 1980’s a common approach to text classification involved humans in the 
construction of a classifier, which could be used to define a particular text category.  
Such an expert system would typically consist of a set of manually defined logical 
rules, one per category, of type  

if {DNF formula} then {category} 

A DNF (“disjunctive normal form”) formula is a disjunction of conjunctive 
clauses; the document is classified under a category if it satisfies the formula i.e. if it 
satisfies at least one of the clauses.  An often quoted example of this approach is the 
CONSTRUE system [1], built by Carnegie Group for the Reuters news agency.  A 
sample rule of the type used in CONSTRUE to classify documents in the ‘wheat’ 
category of the Reuters dataset is illustrated below. 

if ((wheat & farm) or   
(wheat & commodity) or   
(bushels & export) or   
(wheat & tonnes) or   
(wheat & winter & ¬ soft))   
then  
WHEAT  else  ¬ WHEAT   
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Such a method, sometimes referred to as ‘knowledge engineering’, provides 
accurate rules and has the additional benefit of being human understandable.  That is, 
the definition of the category is meaningful to a human, thus producing additional 
uses of the rule including verification of the category.  However the disadvantage is 
that the construction of such rules requires significant human input and the human 
needs some knowledge concerning the details of rule construction as well as domain 
knowledge [2].   

Since the 1990’s the machine learning approach to text categorisation has become 
the dominant one.  In this case the system requires a set of pre-classified training 
documents and automatically produces a classifier from the documents.  The domain 
expert is needed only to classify a set of existing documents.  Such classifiers, usually 
built on the frequency of particular words in a document (sometimes called ‘bag of 
words’), are based on two empirical observations regarding text: 

1. the more times a word occurs in a document, the more relevant it is to the 
topic of the document. 

2. the more times the word occurs throughout the documents in the collection the 
more poorly it discriminates between documents. 

A well known approach for computing word weights is the term frequency inverse 
document frequency (tf-idf) weighting [3] which assigns the weight to a word in a 
document in proportion to the number of occurrences of the word in the document 
and in inverse proportion to the number of documents in the collection for which the 
word occurs at least once.  A classifier can be constructed by mapping a document to 
a high dimensional feature vector, where each entry of the vector represents the 
presence or absence of a feature [4].  In this approach, text classification can be 
viewed as a special case of the more general problem of identifying a category in a 
space of high dimensions so as to define a given set of points in that space. Such 
sparse vectors can then be used in conjunction with many learning algorithms for 
computing the closeness of two documents and quite sophisticated geometric systems 
have been devised [5].   

Although this method has produced accurate classifiers there are a number of 
drawbacks from the machine learning approach as compared to a rule based one. 

1. All the word order information is lost; only the frequency of the terms in the 
document is stored.   

2. The approach cannot normally identify word combinations, phrases or multi-
word units e.g. ‘information processing’ [6]. 

3. If word stemming is used inflection information is also lost. 
4. The classifier (the vector of weights) is not human understandable. 

In this paper we describe a method to evolve compact human understandable rules 
using only a set of training documents.  The system uses genetic programming 
(GP)[7] to produce a synthesis of machine learning and knowledge engineering with 
the intention of incorporating advantageous attributes from both.  The rules produced 
by the GPs are based on N-Grams (sequences of N letters) and are able to use a wide 
variety of features including word combinations and negative information for 
discrimination purposes.  In the next section, we review previous classification work 
with N-Grams and with phrases.  We then provide information concerning the 
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implementation of our application and the initial results we have obtained on a text 
classification task.  Although GP has been used in a textual environment [8,9] it has 
not previously been used to evolve compressed classifiers based on evolving N-Gram 
patterns. 

1.1   N-Grams 

A character N-Gram is an N-character slice of a longer string.  For example the word 
INFORM produces the 5-grams _INFO, INFOR, NFORM, FORM_ where the 
underscore represents a blank.  The key benefit of N-Gram-based matching derives 
from its very nature: since every string is decomposed into small parts any errors that 
are present tend to affect only a limited number of those parts leaving the remainder 
intact.  The N-Grams for related forms of a word (e.g., ‘information’, ‘informative’, 
‘informing’, etc.) automatically have a lot in common.  If we count N-Grams that are 
common to two strings, we get a measure of their similarity that is resistant to a wide 
variety of grammatical and typographical errors [10,11,12].  A useful property of N-
Grams is that the lexicon obtained from the analysis of a text in terms of N-Grams of 
characters cannot grow larger than the size of the alphabet to the power of N.  
Furthermore, because most of the possible sequences of N characters rarely or never 
occur in practice for N>2, a table of the N-Grams occurring in a given text tends to be 
sparse, with the majority of possible N-Grams having a frequency of zero even for 
very large amounts of texts.  Tauritz [13] and later Langdon [14] used this property to 
build an: adaptive information filtering system based on weighted trigram (N=3) 
analysis in which genetic algorithms were used to determine weight vectors.  An 
interesting modification of N-Grams is to generalise N-Grams to substrings which 
need not be contiguous.  Lodhi et al. [15] define a learning algorithm that uses non-
contiguous substrings of N characters, but with a penalty for any gaps occurring 
between the N characters.   

1.2   Phrases 

The notion of N-Grams of words i.e. sequences or occurrences of N contiguous and 
non-contiguous words (with N typically equals to 2, 3, 4 or 5) has produced good 
results both in language identification, speech analysis and in several areas of 
knowledge extraction from text [16,17,18].  Pickens and Croft [6] make the 
distinction between ‘adjacent phrases’ where the phrase words must be adjacent and 
Boolean phrases where the phrase words are present anywhere in the document.  They 
found that adjacent phrases tended to be better than Boolean phrases in terms or 
retrieval relevance but not in all cases.  Restricting a search to only adjacent phrases 
means that some retrieval information is lost.  The implementation described below is 
able to make use of both adjacent and Boolean phrases if they are found to aid 
discrimination between documents. 

2   Our Genetic Programming Approach 

When building text classifiers there are usually a variety of options regarding pre-
processing of documents and particular parameters values.  Examples include whether 
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to remove stop words, to stem words to a common form, to use words or N-Grams as 
terms and whether to search for single terms, phrases or particular sequences of terms.  
Where N-Grams or phrases are used the length of the phrase or N-Gram must also be 
determined.  Although many of these options have been researched [19] it is often the 
case that effects on the performance of the classifier will depend on the particular 
classifier and the particular text environment [20].  We have developed a GP system 
where many of these decisions are either made redundant or are taken by the 
individual GPs. 

We summarise the key features below: 

• The basic unit (or phrase unit) we use is an N-Gram (sequence of N 
characters). 

• N-Gram based rules are produced by GPs and evaluate to true or false for a 
particular document.  

• A classification rule must be evolved for each category c.  Fitness is then 
accrued for GPs producing classification rules which are true for training 
documents in c but are not true for documents outside c.  Thus the 
documents in the training set represent the fitness cases. 

2.1   Data Set 

The task involved categorising documents selected from the Reuters-21578 test 
collection, which has been a standard benchmark for the text categorisation tasks 
throughout the last ten years [20].  In our experiments we use the “ModApt´e split”, a 
partition of the collection into a training set and a test set that has been widely 
adopted by text categorisation experimenters.  The top 10 categories are also widely 
used and these are the categories we adopt here.   

2.2   Pre-processing 

Before we start the evolution of classification rules a number of pre-processing steps 
are made. 

1. All the text in the document collection is placed in lower case.   
2. Numbers are replaced by a special character and non-alphanumeric characters 

are replaced by a second special character.   
3. All the documents in the collection are searched for N-Grams which are then 

stored in sets for size of N=2 to N=max_size (where max_size can be the 
longest word in the collection).  The size of these sets is reduced by requiring 
that an N-Gram occur at least 4 times before being included in a set. 

The use of N-Grams as features makes word stemming unnecessary and the natural 
screening process provided by the fitness test means that a stop list is not required.  
Note that only step 3 is actually essential for the GP system to run.  Including upper 
case letters and numbers would significantly increase the search space of the GP 
system but could provide useful features for discriminating between documents in 
particular domains. 
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2.3   Fitness 

GPs are set the task of assembling single letters into N-Gram strings and then 
combining N-Grams with Boolean functions to form a rule.  The rule is then 
evaluated against the documents in the training set.  Each rule can be tested against 
any document and will return a Boolean value indicating whether the rule is true for 
that document.  An example of a rule produced by a GP evolving a classifier for the 
crude category of the Reuters 21578 is 

(AND (EXISTS crude) (EXISTS (OR nerg barr))) 

A classification rule must be evolved for each category c.   Each rule is actually a 
binary classifier; that is it will classify documents as either in the category or outside 
the category.  When evolving a rule for a particular category c the fitness depends on 
the number of documents in the category where the rule is true and the number of 
documents outside the category where the rule is true.   

In information retrieval and text categorisation the F1 measure is commonly used 
for determining classification effectiveness and has the advantage of giving equal 
weight to precision and recall [21].  F1 is given by 

ρπ
πρρπ
+

= 2
),(1F  (2) 

where:  
Recall (π )= the number of relevant documents returned/the total number 

of relevant documents in the collection 
Precision ( ρ )= the number of relevant documents returned/the number 

of documents returned. 

F1 also gives a natural fitness measure for an evolving classifier.  The fitness of an 
individual GP is therefore assigned in the following way: 

1. evaluate the rule produced by the GP against all documents in the training 
set. 

2. calculate precision, recall and F1 by counting the documents where the rule 
is true in the category and outside the category for which the classifier is 
being evolved. 

3. compute standardised fitness as 1 – F1 so that 0 is given to a perfect 
classifier for that category.   

2.4   GP Types 

We use a strongly typed tree based GP [22] system with types shown in Table 1. 

Table 1. GP Types 

GP Type Description 
String A sequence of one or more characters. 
Boolean True/False: the return type of all GPs 
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2.5   GP Terminals 

In our system we use the following character literals stored as string values. 
 
26 lower case alphabetic characters (a-z). 
“~” meaning the space character 
“#” meaning any number.   
“^” meaning any non-alphanumeric character. 
 

Note that for particular domains it may be useful to include numbers (still stored as 
strings), upper case characters and other special characters although this will increase 
the search space of the GP system. 

2.6   GP Functions 

The GPs are provided with protected string handling functions for combining 
characters into N-Gram strings and concatenating N-Grams into a longer N-Gram.  
Most combinations of letters above an N-Gram size of 2 are unlikely to occur in any 
text, with the majority of possible N-Grams having a frequency of zero even for very 
large amounts of texts. For example, 40 MB of text from the Wall Street Journal were 
found to contain only 2.7*105 different 5-grams out of a possible 7.5*1018, based on 
an alphabet of 27 characters [23]. We guide the GPs through the vast search space of 
possible N-Gram patterns by the provision of protected ‘EXPAND’ function. The 
function initially forms a new N-Gram by appending one N-Gram to another. The 
EXPAND function checks if the new N-Gram is in the set of N-Grams of size N 
originally extracted from all the text in the all the training documents.  If it is found 
the new N-Gram is returned.  If it is not found, i.e. the N-Gram did not occur in the 
documents of the training set, the next N-Gram in the set (in alphabetical order) is 
returned.   

We found that using an unprotected concatenation function it was quite rare for 
N-Grams of size greater than 2 to be evolved.  However using the EXPAND 
function long N-Grams and words are easily and commonly evolved by combining 
shorter strings.  For example the string ‘wheat’ could be evolved in the following 
way 

(EXPAND w (EXPAND (EXPAND h e) (EXPAND a b))) 

The function initially creates the string ‘wheab’.  This string is not found in the set 
of N-Grams of size 5 originally extracted from the collection.  The next N-Gram in 
the set of 5-Grams is therefore returned (‘wheat’).   

Table 2 shows a basic set of GP functions for evolving classification rules.  
Although the functions ANDSTR, ORSTR, and NOTSTR are not essential as 
they are definable by the other operators, we include them as a way reducing tree 
sizes.  
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Table 2. GP Functions 

Function 
Name 

No of 
Args 

Type of 
Args 

Return
Type 

Description 

EXPAND 2 String String Concatenate 2 N-Grams and return the 
nearest N-Gram of the same length 
extracted from the training data. If found 
in the set of N-Grams extracted from the 
training data return that N-Gram else 
return the next N-Gram in the set. 

EXISTS 1 String Boolean IF the N-Gram is found in a document 
return TRUE ELSE return FALSE 

AND 2 Boolean Boolean Return arg1 AND arg2 
OR 2 Boolean Boolean Return arg1 OR arg2 
NOT 1 Boolean Boolean Return NOT arg1 
ANDSTR 2 String Boolean IF arg1 AND arg2 are found in the 

document return TRUE ELSE return 
FALSE 

ORSTR 2 String Boolean IF arg1 OR arg2 are found in the 
document return TRUE ELSE return 
FALSE 

NOTSTR 1 String Boolean IF arg1 is NOT found in the document 
return TRUE ELSE return FALSE.   

2.7   GP Parameters 

The GP parameters used in our experiments are summarised in Table 3.   

Table 3. GP Parameters 

Parameter Value 
Population 800 
Generations 40 
Typing Strongly typed 
Creation Method Ramped half and half 
GP format Tree Based 
Selection type Tournament 
Tournament size 7 
Mutation probability 0.1 
Reproduction probability 0.1 
Crossover probability 0.8 
Elitism No 
ADF No 
Maximum tree depth at creation 9 
Maximum tree depth  17 
Maximum tree depth for mutation 4 
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3   Experiments and Results 

The objective of our experiments were two fold: 

1. To evolve effective classifiers against the text dataset. 
2. To automatically produce compact human understandable rules with minimal   

features. 

Category crude: Reuters 21578 data

0

0.2
0.4

0.6
0.8

1

Generation 8 17 26 35

 Best Fitness
 Precision
 Recall
 F1

 

Fig. 1. Evolution of a rule for the Reuters 21578 Crude category 

 
Fig. 1 shows a fairly typical pattern of evolution and in this case we see the 

emergence of a useful rule after approximately 20 generations.  Precision is very high 
during the early evolution but is reduced as recall improves.  In other cases we see 
recall starting very high and reducing as precision improves.  In general we will see 
an improvement in F1 as measured against the training set and a corresponding but 
lower F1 as measured against the test set. 

A classification rule was evolved for each category by using 4 GP runs and 
selecting the best rule to emerge from the 4 runs.  The rule produced by the best 
individual for each category is shown in Table 4 together with the F1 measure (against 
the test set).  Functions are shown in upper case and N-Grams are shown in lower 
case.  The blank character is indicated by ‘~’. 

The global macro-average F1 is 0.717 which compares favourably with other 
classifiers such as [18] although we should note that this is not a strictly controlled 
comparison.  Indeed our intention at this point is not to produce the best classifier in 
terms of accuracy but to produce a good classifier which is based on a small number 
of features in a human understandable form.  Comprehensibility may be improved by 
using various forms of parsimony pressure on the GP evolution and by favouring 
longer N-Grams or words.   
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Table 4. Rules evolved for Reuters top 10 categories 

Name F1 The Rule 

Crude 0.826 (OR  (OR  (OR  (ORSTR arrels~ rude~) 
(EXISTS opec~)  (EXISTS energy)  (EXISTS oleum)))) 

Corn 0.835 (ORSTR aize~ corn~) 
Earn 0.857 (OR (ORSTR shr~ qt)  (EXISTS ividend)) 
Grain 0.550 (OR  (ORSTR ulture~ crop~)  (EXISTS nnes~)) 
Interest 0.569 (OR  (OR  (AND  (ORSTR engla deposit)  (OR  (NOTSTR 

vity)  (EXISTS ny)  (OR  (AND  (ORSTR lending epurcha)  
(ORSTR ~fut cut)  (AND  (OR  (ANDSTR g-t ~l)  (ORSTR 
ederal~ ~money~)  (EXISTS further)  (OR  (AND  (ORSTR 
epurc sbank)  (NOT  (EXISTS ny)  (AND  (OR  (ANDSTR 
g-t bl)  (ORSTR ngland~ ~money~)  (NOT  (EXISTS ny)))) 

money-fx 0.612 (ORSTR ~mone dollar~) 
Ship 0.745 (OR  (OR  (ORSTR trike hips~)  (ORSTR vesse river)  

EXISTS ipping~))) 
Trade 0.761 (AND  (ORSTR kore rade~)  (OR  (OR  (AND  (ORSTR 

~yeu rade~)  (ORSTR oods ficit)  (ORSTR ~yeu domes)  
(ORSTR ~bil rplus))) 

Wheat 0.663 (AND  (NOTSTR prio)   
(AND  (NOTSTR opme)  EXISTS wheat)) 

Acq 0.755 (ORSTR cqui hares) 

4   Discussion 

Previous text classification systems have used various sets of features including 
words, word combinations and N-Grams.  The system described here is capable of 
including any or all of these where they are found to be useful for classification 
purposes.  In addition the system can easily make use of negative information via the 
inclusion of Boolean NOT functions in the rule.  The rule produced can be 
reformulated and fed directly into a database or Internet search engine to retrieve 
similar texts.  The rule is produced automatically but is somewhat similar to rules 
produced by knowledge engineering systems using human experts.  For example the 
following rule was evolved for the Reuters Trade category happened to be in DNF 
form although it was not the most effective classifier (F1 0.692). 

(OR  (OR  (OR  (ANDSTR llion export)  (OR  (ANDSTR llion surpl) 
(ANDSTR ~trad mport)  (ANDSTR ~trad vis)  (ANDSTR ~trad yeutt))) 

The rule created may also be used for purposes beyond classification such as text 
mining.  For example, the regular occurrence of synonyms (different words with the 
same meaning) and homonyms (words with the same spelling but with distinct 
meanings) are key problems in the analysis of text data: in the language of relational 
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databases this is a classic many-to-many relationship. There is evidence that the rules 
evolved in our current system are using synonyms to improve the effectiveness of a 
rule, e.g.: 

(ORSTR aize~ corn~) 

Furthermore we suggest that homonyms are best discriminated by the use of 
contextual evidence, i.e. by an analysis of nearby strings in the text. Much of this 
contextual evidence can be detected simply by the use of  the Boolean operators 
AND, OR and NOT, though it may be that additional operators that impose 
constraints on the relative positions of two N-Grams in the text will allow an 
improved discrimination 

5   Conclusions and Future Work  

We have produced a system capable of discovering rules based on a rich and varied 
set of features, which are useful to the task of discriminating between text documents.  
We suggest that there may a number of areas within automatic text analysis where the 
basic technology described here may be of use. 

We are investigating the usefulness of new GP functions: 

• Special functions for identifying word order.  For example FOLLOWS X Y 
[9] indicates that the word matched by N-Grams Y must follow the word 
matched by N-Gram X in the text of a document. 

•  Kleene's star (*) could be included as a marker for an arbitrary sequence of 
characters, e.g. a*t matches any of "at", "ant" or "agony aunt" within an N-
Gram. We will also investigate the use of full regular expressions for the 
rules evolved by the GPs. 

• Functions for identifying words that are ADJACENT in the text or NEAR 
one another.  

• New functions together with numeric terminals for identifying frequency 
information may be introduced [8].  Functions such as ‘>’ return a Boolean 
value based on the frequency of a particular N-Gram in comparison to an 
integer terminal.  This frequency could be a simple count of the occurrence 
of an N-Gram in a document or a more sophisticated measure such as the 
term frequency inverse document frequency (tf-idf) described above.  

We believe that the system described here may be of particularly value when used 
in conjunction with other classification systems in a classification committee [20] 
because the method of producing the classifier is quite different to other automatic 
classifiers based on vectors of weights. 
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Abstract. Wireless sensor networks (WSNs) are medium scale mani-
festations of a paintable or amorphous computing paradigm. WSNs are
becoming increasingly important as they attain greater deployment. New
techniques for evolutionary computing (EC) are needed to address these
new computing models. This paper describes a novel effort to develop
a variation of traditional parallel evolutionary computing models to en-
able their use in the wireless sensor network. The ability to compute
evolutionary algorithms within the WSN has innumerable advantages
including intelligent-sensing, resource-optimized communication strate-
gies, intelligent-routing protocol design, novelty detection, etc. In this
paper we develop a parallel evolutionary algorithm suitable for use in
a WSN. We then describe the adaptations required to develop prac-
ticable implementations to effectively operate in resource constrained
environments such as WSNs. Several adaptations including a novel rep-
resentation scheme, an approximate fitness computation method and a
sufficient statistics based data reduction technique. These adaptations
lead to the development of a GP implementation that is usable on the
low-power, small footprint architectures typical to wireless sensor motes.
We demonstrate the utility of our formulations and validate the proposed
ideas using the algorithm to compute symbolic regression problems.

1 Introduction

Amorphous or paintable computers are very large arrays of low powered comput-
ers. Computers with a few hundred kilobytes of RAM and short range wireless
communications are deployed with a density of tens to hundreds of elements
per square centimeter. These computers are unreliable and have no global ad-
dressing scheme. This new genre of computing poses many new and interesting
problems to the programmer and algorithm designer. How do you take advan-
tage of a massively distributed computer whose individual elements are very
resource constrained? How do you write distributed algorithms without a global
addressing scheme or predictable topology? William Butera, V. Michael Bove,
and James McBride of the MIT Media Lab proposed a series of algorithms
for performing media processing and storage on paintable computers [1]. Their
paintable computer architecture is the basis for the one used in this research.
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A paintable computing element runs process fragments (pfrags), containing
code and data used as part of a global program. These fragments have read-write
access to the home-page of the processor they are running on. A home-page con-
tains key value pairs and is somewhat analogous to a tuple space. Process frag-
ments have read-only access to the home-pages of proximal processing elements.
Process fragments can migrate to neighboring processing elements.

Currently, no known implementations of paintable computing exist except
validated simulations. On the other hand there is the wireless sensor network
technology that has been gaining tremendous importance in recent years. Several
problems that theoretically present themselves in paintable computing often can
be manifested as challenges in wireless sensor network environments due to their
similarity in terms of being highly resource constrained. In this paper we de-
velop genetic programming solutions that effectively work in the wireless sensor
network environment and demonstrate the utility of continuing this direction of
research to realize the goals towards paintable computing.

There are innumerable technological hurdles that must be overcome for ad-
hoc sensor networks to become practical. A single unit of WSNs is often termed
as a ‘mote’; these individual motes are incredibly resource constrained. They
are characterized by a limited processing speed, storage capacity, and commu-
nication bandwidth. Moreover, their lifetime is determined by their ability to
conserve power. Everything we take for granted in personal computing at the
PC or desktop level comes at a huge premium in WSNs. All things considered,
such constraints demand new hardware designs, network architectures, software
applications, and therefore new learning algorithms that maximize the motes
capabilities while keeping them inexpensive to deploy and maintain.

Developing GP solutions to work in WSNs is the primary focus of this work.
Specifically, we describe the following contributions:

– A novel framework for performing genetic programming on a wireless sensor
mote.

– A continuous algorithm to effectively evolve an in-network GP solution.

This paper is organized as follows: In the next section we outline the necessity
for developing effective evolutionary computing solutions for wireless sensor net-
works. In section 3 we outline the changes and adaptations required to develop
small-footprint GP. In section 3.1 we outline the details for developing a con-
tinuous algorithm that asynchronously computes a symbolic regression solution
along with the distributed architecture it follows to do this computation. We
then demonstrate the utility of our proposed algorithms by conducting experi-
ments on a variety of problem sets and present the results. A brief discussion of
these results concludes the paper.

2 Background and Related Work

There is significant interest within the GP community to derive effective for-
mulations that help solve real world problems. The domain of wireless sensor
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networks and amorphous computing is one such real world domain that is gain-
ing increasing attention. GP solutions have been previously proposed for several
problems that manifest themselves in sensory computing systems. Seok et al. de-
scribe a technique to perform calibration of sensors using Genetic Programming
on evolvable hardware [7]. Ziegler and Banzhaf proposed to use evolutionary
techniques to develop a sensory nose for a robot [9]. The Mate system proposed
by Levis is a tiny virtual machine for sensor networks [2]. The contribution in
this paper is geared more toward adapting the GP system to work in a resource
constrained environment and make decisions on the sensory data. For example,
consider the problem of determining correlation between light and temperature
signals in a sensor network. It is known within the signal processing community
that these two parameters display similar variations under most environmen-
tal conditions. By adapting GP to work on an intelligent sensor node (termed
mote) one can compute the exact correlation function that best describes the re-
lationship between sensory attributes based on input data. Another example of a
problem the proposed architecture can help address is the problem of optimized
routing to save communication costs in WSNs. In this case, the proposed system
can be instructed to compute an optimal routing path computed locally using
the signal strength as an input parameter. Distributed systems that compute an
optimization problem have been studied extensively and GP solutions have been
proposed to solve problems in those domains [8]. Along similar lines, effective
decision making using multi-agent teams was proposed by Luke et al. [3]. From
a computation environment perspective, Nordin et al. explore ways to evolve
machine code for embedded systems [6]. Our work extends these efforts and fo-
cuses on developing a GP system that effectively works in resource constrained
environments.

Due to the Micro Electro-Mechanical Systems (MEMS) revolution micro-
sensors are now following manufacturing curves that are at least related to
Moore’s Law. Such current trends in paintable or spray computing are sum-
marized by Mamei [4]. They also highlight the need for intelligent in-network
processing architectures such as the one we propose in this paper. Nagpal et al.
present a programming methodology for self-assembling complex structures from
vast numbers of locally-interacting identically-programmed agents, using tech-
niques inspired by developmental biology [5]. Our work is inspired by this effort
to develop a GP paradigm that can later be extended to include self-assembly
type optimization problems.

Basic and Parallel Evolutionary Algorithm

The Basic Evolutionary Algorithm (BEA) is the most common model for evo-
lutionary computation, however, it is clearly inappropriate for a wireless sensor
network. If each mote were running a BEA they would likely take too long to
converge to be effective, nor would the algorithm exploit the parallel nature of
a WSN.

Evolutionary algorithms tend to be highly parallelizable and many specific al-
gorithms have been developed which take advantage of this. There are a number
of common parallel evolutionary algorithms:
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Controller/Client Model. uses a global population, operations are spread
among the clients by the Controller as necessary to perform evaluations on the
global population members. Has a high communication, but may be appropriate
for some types of parallel architectures.

Island Model. has a separate evolutionary algorithm running on each avail-
able processing node. Exchanges between processing nodes depend on the island
(generally based on the network) topology. This technique shares the best local
solutions, which usually contain good partial solutions, with other nodes in the
same parallel algorithm. The good partial solutions are either introduced to dif-
ferent gene pools or, if already present, reinforce the good partial solution by
increasing their influence.

Cellular Model.1 places each potential solution on a separate processing node.
Each individual node can choose potential mates from neighboring nodes us-
ing some selection method. As in the island model, the neighbors are generally
dependent on network topology which can vary greatly depending on the partic-
ular implementation. Due to its simplicity a matrix cellular model is particularly
effective on massively parallel computers.

3 Evolutionary Algorithms on a Mote

WSNs are an excellent target for distributed evolutionary computing. WSNs
require learning algorithms that are capable of learning independent of the op-
eration of other motes, but are also capable of using information available glob-
ally within the network to better optimize for local conditions. A distributed
evolutionary algorithm can achieve both of these goals. Each mote can indepen-
dently evolve, yet recombine genetic information from the surrounding motes to
improve its suitability to the local environment.

In addition evolutionary algorithms, or learning algorithms in general, must
be designed to address the resource constraints present in a WSN while also
taking advantage of its unique properties. In our algorithm specifically, the ability
to wirelessly broadcast information is used, a feature of WSNs not generally
exploited in traditional distributed computing systems.

The parallel evolutionary algorithm described in this paper is based on tradi-
tional parallel algorithms like the Island Model described in section 2, but mod-
ifications are made to allow the algorithm to operate in a resource constrained
WSN. Motes in a WSN communicate wirelessly, in effect all communication is
necessarily broadcast, although not all receivers may choose to observe the mes-
sage. Our algorithm uses broadcast transmission exclusively instead of relying on
point-to-point communication. This reduces the total bandwidth requirements,
as well as conserves the limited battery power of the wireless modes, as wireless
transmitting is generally the most power hungry mode of these devices.

1 The cellular model is so named because it has been shown to simulate a certain class
of cellular automata.
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3.1 Broadcast-Distributed Parallel Genetic Programming

We propose the Broadcast-Distributed Parallel genetic programming model (BDP)
to address WSNs and paintable computing architectures. The primary phases
of the algorithm are fitness evaluation, genetic reproduction with local and re-
mote genetic information and broadcast of genetic information. Because the
controller/client model is inappropriate for the ad-hoc nature of WSNs, and be-
cause the benefits of the cellular model are not applicable in our domain, we
chose to base the BDP algorithm on the island model.

Random Initial Generation

Evaluate Fitnesss

Perform Local Genetic Operations

Perform Crossover
on Local Population
and Mates from 
Neighbors if 
Available

Broadcast 
Random Individual

Mate List

Fig. 1. Broadcast-Distributed Parallel Algorithm

In BDP each mote carries its own population, and distributes genetic infor-
mation in an asynchronous fashion. There is no need to have any physical clock
on the motes running the algorithm. Exchanges of genetic information are made
asynchronously. Each generation involves local reproduction, reproduction with
remote genetic information, calculating the fitness for the entire population, and
broadcasting local genetic information. Conceptually, if the motes in a WSN
running the BDP algorithm are too far apart to be able to communicate, each
will operate as if they were running the BEA because they are unable to inject
any external genetic information. See Figure 1 for an illustration of the BDP
generation.

After each generation of the BEA on a mote Mb a random member of the
population {Mpi

b | i < |Mp
b |} is selected and broadcast to remote motes2. The

2 Mb is a broadcasting mote, Mr is a receiving mote, Mp is the population on a mote,
Mm is the mate list on a mote.
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entire individual is sent. However, the size of any given individual is particularly
small, on the order of a few bytes.

Each mote Mr within wireless range of a broadcasting mote (henceforth re-
ferred to as neighbors) receives the broadcast Mpi

b and appends it to a list of
incoming genetic information (the mate list), Mm

r . When enough genetic mate-
rial is received by a mote, that is when |Mm

r | > a, where a is some arbitrary
constraint based on the available memory on the mote, a selection is performed
on Mm

r and the internal population Mp
r and a crossover operation is performed.

crossover(Mpj
r , Mmk

r ) for some j < |Mp
r |, k < |Mm

r |

No data is exchanged in the reverse direction from Mr to Mb as a result of
this crossover operation. However, at the end of the next internal generation,
mote Mr will broadcast a random mote as described above. Because Mr was
a neighbor of Mb so that it received Mpi

b during a broadcast transmission, it
is likely that Mb will remain a neighbor when their roles are reversed. Thusly,
crossover will generally be equilibrious as exchanges will likely occur in both
directions, although not necessarily in the same discreet generation.

It is worth noting that some motes will have an advantage if they have more
neighbors. They will not only exchange more of their own genetic information,
but they also will receive more genetic information, therefore they may exhibit
quicker fitness improvements when compared with a lone mote that lacks many
neighbors.

The number of neighbors may vary within the set of motes with time. This
modifies the chance a particular member is selected given its current position and
the current time. This makes an examination of the survivability of a particular
member in time difficult and has not yet been addressed but the overall result of
selection is not affected. That is, the most fit member of a motes population is
selected and its partial solutions survive. This maintains the selective pressure
of the algorithm that causes the overall fitness of the population to improve.
The individuals involved in crossover depend entirely and only on the results of
selection as selection is fundamentally the same in a BDP and an BEA, crossover
is also comparable.

3.2 Resource Constraints

The motes in a wireless sensor network are typically very low power compared to
traditional PCs. They generally have far less total storage, perhaps no secondary
storage (i.e. disk storage), and may rely on the operating system, software and
data being able to fit in a small amount of solid-state primary storage. Many
enhancements can be made to reduce the space requirements of both the software
binary, as well as the data representation and run-time memory requirements.

There are obvious memory usage improvements achievable by using a steady
state evolutionary algorithm with an in-place replacement strategy instead of a
generational algorithm that replicates the entire population with each generation
before replacing the old population with the new; roughly half the amount of
memory is needed when using a steady state algorithm.
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The encoding strategy for individuals can significantly alter the memory re-
quirements for a single mote in a BDP network. Particularly for evolutionary
algorithms such as genetic programming, where the size of an individual is not
fixed, it is necessary to set reasonable upper bounds on the allowable size of an
individual. This is achieved by adding a limit to the allowable tree depth of a
candidate solution.

It is also necessary to weigh the differences in using an interpreted language
versus a compiled language to develop an implementation. An interpreted lan-
guage (e.g. Perl, Lisp or Java) requires an entire virtual machine to be running
on a mote; this would lead to a very sizeable increase in the memory footprint
as well as executable code size. However a compiled language has the advantage
of being targeted to a specific platform, and therefore omits any penalties (in
performance or memory usage) introduced by having a virtual machine present.

The obvious approach in a language offering dynamic memory allocation such
as C is to store individuals as trees of dynamically allocated nodes in the program
heap. Under this scheme each node is composed of a datum and two pointers
to its left and right children. On the target system in question (4 byte memory
address) this solution weighs in at nine bytes per node.

Maintaining the program trees in blocks of statically allocated memory is
attractive because the code for dynamically allocating memory (malloc and
free in C) can be omitted from the final binary, provided dynamically allocated
memory is not used elsewhere. Dynamic functionality is not available at all in the
standard libraries of the smallest conceivable target platforms; it would require
a significant increase in source code size.

The most compact memory usage for program tree storage is to using a
constant size for each operator or terminal in the program tree. The offset for
the right sub-tree is related to the size of the left sub-tree and can be calculated
by recursing down the left sub-tree. Since most operations already involve an
in-order traversal of the program tree this representational scheme requires little
additional code. This method is essentially a form of prefix notation. Because
operators and terminals are well defined and each operator requires exactly two
operands it is possible to evaluate the tree without any additional structure
other than order. With a more complicated operator set, it may require a small
amount of additional effort to achieve this effect.

The downside of this strategy is that any operation such as mutation or
crossover which adjusts the size of the tree at anything other that the right most
leaf node will require a resizing of the entire data structure. This is a reasonable
tradeoff in severely memory constrained motes.

By using a prefix notation and reducing the size of symbols in the program
tree, we are able to reduce the run-time memory requirements to just 5.6% of
the memory consumed by most traditional GP representations using dynamic
memory allocation. In terms of computation this method is no more expensive
than any other representation for operations which otherwise require a traversal
of the tree.
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3.3 Memory Usage Requirements

By using the techniques described above the memory requirements of the BDP
algorithm was significantly reduced. Equation 1 shows the total memory require-
ments for each node3.

mem = b + v + p + i (1)
where:

b � 6kB program binary
v = |vars| × sizeof(float) input variables

p = |pop| × (2depthmax − 1)
× sizeof(tree node) + (2 × sizeof(uint)) population

i = |mates| × (2depthmax − 1)
× sizeof(tree node) + (2 × sizeof(uint)) mate list

For typical parameter sizes the memory requirements of the algorithm are
tenable even on very low-powered WSN devices. The memory requirements are
even more impressive when compared with parallel GP implementations that
make little or no attempt to restrict memory usage. See Table 1.

Table 1. Typical Memory Requirements

population typical parallel GP BDP percentage of
on mote memory usage4 memory usage typical
50 187kB 14.4kB 7.7%
100 296kB 20.4kB 6.8%
200 514kB 32.5kB 6.3%
500 1168kB 68.9kB 5.9%

3.4 Improving Training Efficiency

The major impediment to compute an evolutionary algorithm over large datasets
is the the amount of data required to be present in-memory while training. We
attempt to alleviate this problem by reducing the amount of training data neces-
sary to achieve convergence. This involves reducing the training set to a minimal
set of variant data. The training set must be diverse enough to encompass the en-
tire search space, but also sparse enough to avoid over training on any particular
area of the search space.

In an attempt to minimize memory usage due to training data storage while
maintaining speed and scalability we examined a clustering approach to

3 For the TinyOS architecture: sizeof(float) = 32 bits, sizeof(tree node) = 4 bits,
sizeof(uint) = 16 bits.

4 For a standard parallel GP implementation with program binary ∼80kB and using
9B per tree node.
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Fig. 3. Varying the Number of Motes in Network
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Fig. 4. Varying the Population on Each Mote

on an average of several runs on the same problem with the same number of
motes.

The same effect is also observed with the population size is increased on each
mote. Figure 4 shows this behavior. The number of motes is kept constant in this
experiment. Again, each data point is an average of several runs all operating
on the same problem.

Figure 5 show the convergence properties of the BEA and BDP. The graphs
are an aggregate of the run results of several different problems. The BDP im-
proves fitness more gradually, but reaches the solution in approximately 25,000
genetic operations, versus 85,000 using the BEA. The total population sizes used
in each algorithm was the same, in the BDP the total population was distributed
across multiple motes in a fixed environment.

It is also worth noting that we observed the BDP algorithm with total pop-
ulation size p where each mote has a population of |M |/p to be less prone to
stagnation than a population of size p running the BEA algorithm. This is due
to the propensity of good solutions to distribute slowly throughout the network,
this mitigates factors that can occasionally over-emphasize highly fit solutions
in the BEA. The effect of this is shown in Table 2, the problems that could not
be solved by the BEA in a reasonable amount of time were due to over-emphasis
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Fig. 5. Convergence of the BEA (left) and BDP (right) Algorithms

Table 2. Aggregate Genetic Operations Until Convergence Over Various Symbolic
Regression Problems

Problem BEA BDP
P1 6692 8350
P2 7207 9208
P3 84942 18828
P4 130759 23649
P5 315275 43997
P6 DNF5 45756
P7 DNF5 99893

of highly fit but sub-optimal solutions. The problems increase in difficulty from
top to bottom, they range from equations of 3 variables to 8.

5 Conclusions and Future Work

In this work we argue that broadcast-distributed parallel genetic programming
shows promise as a model for evolutionary computing on wireless sensor net-
works and by extension future amorphous or paintable computing architectures.
We show empirically via simulations that it is possible to use the broadcast na-
ture of communication between motes to improve the ability of single motes to
find a near ideal solution in a reduced number of operations when compared to
non-parallel algorithms. We also demonstrate possible ways to build GP imple-
mentations that are practicable on resource constrained WSN motes.

Future work will attempt to determine how well BDP will allow motes to
evolve solutions that are ideal for their local conditions, and whether such motes
will benefit from the receipt of genetic information for neighboring motes that

5 Did not finish computation in a reasonable amount of time.
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likely share similar conditions. These experiments will also focus on obtaining
data from actual motes in real environments.
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Abstract. We empirically investigate the use of dual duplication/truncation 
operators both as mutation operators and as generic local search operators, in 
combination with genetic search in a tree adjoining grammar guided genetic 
programming system (TAG3P). The results show that, on the problems tried, 
duplication/truncation works well as a mutation operator but not reliably when 
the complexity of the problem was scaled up. When using these dual operators 
as a generic local search operator, however, it helped TAG3P not only to solve 
the problems reliably but also cope well with scalability in problem complexity.  
Moreover, it managed to solve problems with very small population sizes.  

1   Introduction 

Tree adjoining grammar guided genetic programming (TAG3P) [20] is a genetic 
programming system that uses tree-adjoining grammars (TAGs) as the formalisms to 
define its language bias. It was argued in [20] that one of the advantages of using 
TAG-based representation is the ‘feasibility’ (described in section 3) in TAG 
derivation trees, which allows us to design many types of general-purpose search 
operators on syntactically-constrained domains [20]. In recent works [21-23], we have 
shown the usefulness of some of these operators. In particular, in [23], relocation, 
which arises naturally as an operator for doing genetic transposition in a TAG-based 
representation, was investigated.  

In this paper, in the context of tree adjoining grammar guided genetic programming 
(TAG3P), we empirically investigate the use of duplication, another kind of genetic 
transposition, both as a mutation operator and as a generic local search operator for 
genome evolution. For that purpose, we compare results to TAG3P using sub-tree 
crossover and sub-tree mutation operators as in [20], as well as with standard GP. 

The paper is organized as follows. In section 2, we review the concepts of genetic 
transposition in biological evolution and its possible roles in the field of genetic 
programming.  Section 3 briefly reintroduces the definitions of tree adjoining 
grammars and TAG3P as well as the relocation operator. The experiments to 
investigate the roles of relocation in TAG3P are presented and discussed in section 4. 
Finally, section 5 concludes the paper and highlights some future work. 
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2   Genetic Transposition and Genetic Programming (GP) 

Genetic transposition in genome evolution is a phenomenon whereby a region of 
DNA copies itself to another place on the genome. These mobile genetic sequences 
are called transposable elements [3, 28], transposons, or more informally jumping 
genes [3]. It is conjectured that genetic transposition plays an important role in 
forming scattered clusters of related genes in the genome of organisms.  Some 
researchers ([25]) even went futher, in arguing that genetic transposition (replicative 
transposition or duplication) should be considered as one of the main workhorses of 
genome evolution. 

 There are two types of genetic tranposition, namely, replicative transposition and 
conservative transposition [28]. In the former, a transposon makes a repeated copy of 
itself to elsewhere using reverse transcription on an RNA, while in the latter a 
transposon moves to another place by copying itself [28]. In a recent work [23], we 
have investigated the metaphor of conservative genetic transposition, which we call 
genetic relocation. In this paper, the metaphor of replicative transposition, called 
duplication, is studied in the context of a genetic programming system - TAG3P. 

In the field of evolutionary algorithms (EAs), Schwefel ([26]) was probably the 
first researcher to use gene duplication in solving some real-world problems in 
industry. In [11], the concept of gene duplication was also proposed in order to raise 
the power of EAs. Gene duplication appears useful because it can be used to multiply 
useful building blocks within one individual, and then later the copied building blocks 
can be subjected to change at the new places by the subsequent gene operations. 

In the field of genetic programming [2, 14-16], gene duplication has been studied 
in several forms. In [18, 19], gene duplication was implemented by copying 
automatically defined function branches in multi-part programs. Haynes ([9,10]) also 
implemented a kind of gene duplication for evolving collective behaviours by 
exchanging codes between individuals in the population. However a general-purpose 
gene duplication operator acting directly on standard GP expression trees (or the 
executing branch of GP with ADFs) has not previously been implemented. Although 
in [8], a gene duplication operation was defined for GP expression trees and was 
shown to be useful, the implementation is ad-hoc and problem dependent. We believe 
that this difficulty comes from the fixed-arity property in GP expression tree.  

For GEP, a version of GP, the linear representation facilitates the design of genetic 
duplication [4,5]. However, just as in the case of relocation, the duplication of any 
trunk of genes (subcode) in GEP can potentially affect the positions as well as the 
expressiveness (i.e. coding or non-coding) of many other genes, not just at the source 
and destination positions. Thus it creates a global random side effect on the 
phenotype. Nevertheless, it was shown to be useful for GEP in some cases [5].  

In grammar guided genetic programming (GGGP) [6,7,27,29,30], where the 
structure of the programs is constrained by grammar rules, it is more difficult than in 
GP to implement genetic duplication on the genotypic level (usually derivation trees 
of the grammars) because of the rule-based nature of the formalism. GE [27] is an 
exception, because of the linear structure of the genotype, it is easy to implement 
genetic duplication. However, as with GEP, since the GE genotype-to-phenotype map 
does not posses the locality property (i.e. small change in genotype cause small 
change in phenotype), the duplication of sections of genes (subcodes) in GE can 
completely change the meaning and the expressiveness of the genes following the 
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destination position. Depending on the context before the destination position, the 
meaning of the duplicated genes might also vastly change. Therefore, as with GEP, it 
creates a global random side effect on the phenotype.  

3   TAG-Based Representation for GP 

In this section, we first give the definitions of tree adjoining grammars (TAGs) and 
their derivation trees. Then, we describe TAG3P and the duplication and truncation 
operators on TAG-derivation trees, which possess the locality property. 

3.1   Tree Adjoining Grammars 

Joshi and his colleagues in [12] proposed tree-adjunct grammars, the original form of 
tree adjoining grammars (TAG). Adjunction was the only tree-rewriting operation. 
Later, the substitution operation was added but it does not change the power of the 
formalism and therefore will be ignored here.  

TAGs are tree-rewriting systems, defined in [13] as a 5-tuple (T, V, I, A, S), where 
T is a finite set of terminal symbols; V is a finite set of non-terminal symbols (T ∩ V 
= ∅); S ∈ V is a distinguished symbol called the start symbol; and E = I ∪ A is a set 
of elementary trees (initial and auxiliary respectively). In an elementary tree, interior 
nodes are labeled by non-terminal symbols, while nodes on the frontier are labeled 
either by terminal or non-terminal symbols. The frontier of an initial tree contains all 
terminal symbols, while the frontier of an auxiliary tree contains all terminal symbols 
but a distinguished node, the foot node, labeled by the same non-terminal as the root. 
Initial and auxiliary trees are denoted α and β respectively. A tree whose root is 
labeled by X is called an X-type tree.   

The key operation used with tree-adjoining grammars is the adjunction of trees.  
Adjunction builds a new (derived) tree γ from an auxiliary tree β and a tree α (initial, 
auxiliary or derived). If tree α has an interior node labeled A, and β is an A-type tree, 
the adjunction of β into α to produce γ is as follows: Firstly, the sub-tree α1 rooted at 
A is temporarily disconnected from α. Next, β is attached to α to replace the sub-tree. 
Finally, α1 is attached back to the foot node of β. γ is the final derived tree achieved 
from this process.  

The tree set of a TAG can be defined as follows [13]: 

TG = {all tree t: t is completed and t is derived from some initial S-trees through 
adjunctions} 

Where a tree t is completed if all of the leaf nodes of t are labeled by terminal 
symbols. The language generated by the TAG G is defined as  

LG = {w ∈ T*: w is the yield of some tree t ∈ TG}. 

In TAG, there is a distinction between derivation and derived trees. A derivation 
tree in TAG [13] is a tree-structure, which encodes the history of derivation 
(substitutions and adjunctions) used to produce the derived tree. Each node is labelled 
by an elementary tree name: the root must be labelled by an α-tree name, and the 
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other nodes with either an α or β tree. The links between a node and its offspring are 
marked by addresses for adjunctions. 

 Figure 1 illustrates the derivation and derived trees in TAGs  

                          

Fig. 1. Examples of a derivation tree and derived tree in TAGs 

One special class of TAGs is lexicalized TAGs (LTAGs) [13], in which each 
elementary tree of an LTAG must have at least one terminal node. It has been proven 
that there is an algorithm, which, for any context-free grammar G, generates a 
corresponding LTAG Glex that generates the same language and tree set as G [13]. In 
this case, the derivation trees in G are equivalent to the derived trees of Glex. 

3.2   Tree Adjoining Grammar Guided Genetic Programming (TAG3P) 

In TAG3P [20], the derivation tree in LTAG (Glex) was used as the genotype. The 
phenotype is the derived tree of Glex, which is a derivation tree in the corresponding 
context-free grammar G. In [29], it was shown that when solving type-less problems 
like GP, there is a one-to-one map between derivation trees in G and expression trees 
in GP. The mapping schema in our TAG-based representation, therefore, can be 
summarized in figure 2 as follows where the second phase of the map is optional.  

 

Fig. 2. Schema for Genotype-to-Phenotype map in TAG-based Representation 

Other components of TAG3P are as follows [20]: 

Parameters: minimum size of genomes (MIN_SIZE), maximum size of genomes 
(MAX_SIZE), size of population (POP_SIZE), maximum number of generations 
(MAX_GEN) and probabilities for genetic operators. 

Initialization procedure: Each individual is generated by randomly growing a 
derivation tree in Glex to a size randomly chosen between size bounds. 

Fitness Evaluation: an individual derivation tree is first mapped to its derived tree 
(CFG derivation tree). The expression defined by the derived tree is then semantically 
evaluated as in grammar guided genetic programming (GGGP) [29], or translated further 
into the parse tree to, then, be evaluated as in GP [2]. 

Main Genetic operators: sub-tree crossover and sub-tree mutation [20].  
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3.3   Duplication and Truncation Operators    

The derivation tree structure in LTAG has an important property: when growing it, 
one can stop at any time, and the derivation tree and the corresponding derived tree 
are still valid. In other words, the derivation tree in LTAG is a non-fixed-arity tree 
structure (Catalan tree). The maximal arity (number of children) of a node is the 
number of adjoining addresses that are present in the elementary tree of that node. If 
this arity is n, the node can have 0, 1,… or n children.  

In [20], this property was called feasibility. Feasibility allows us to design and 
implement many other new search operators, including bio-inspired ones, in TAG3P 
which would not be possible in standard GP and other GGGP systems [20]. In 
particular, the duplication operator arises naturally from this TAG-based 
representation. To implement duplication in TAG-based representation, a random 
sub-code (sub-tree) is copied from the tree and is then connected at a random NULL 
node, provided that the adjunction is valid.  It is noted that the copying of this sub-
code does not affect the meaning or the expressiveness (coding or non-coding) of the 
other sub-codes in the tree.  Therefore, the effect of the change in phenotype is local 
(at the source and destination positions only).  It is noted that duplication changes the 
size of the tree. Figure 3 illustrates how relocation works. 

 

Fig. 3. Duplication Operator. The squares mean NULL adjunction 

 

Fig. 4. Truncation Operator. The squares mean NULL adjunction 

The dual operator to duplication is truncation, whereby a subtree (subcode) in the 
tree is chosen at random and is subsequently removed from the tree. Since a TAG-
derivation tree is non-fixed arity, the removal of any of its subtrees does not affect the 
validity of the tree. In other words, the tree resulting from truncation is still a valid 
TAG-derivation tree, and its derived tree is also valid. Figure 4 shows how truncation 
works on a TAG-based representation. 
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4   Experiments and Results 

Although gene duplication is bio-inspired and potentially useful for genetic 
programming in general, some preliminary experiments indicated that a direct 
application of duplication operators in TAG3P might not work. The reason is that the 
duplication operator increases the size of the individuals that it is applied to. Some 
preliminary runs suggested that the direct use of the duplication operator without any 
size control strategy usually resulted in very rapid bloat in code size. Consequently, in 
the experiments in this paper, we partnered duplication with the truncation operator as 
a dual operator. 

As in the cases of the insertion/deletion and relocation operators in [22, 23], two 
possible roles for duplication and truncation are investigated in this paper, namely, as 
mutation operators, and as dual generic local search operators (i.e. they are used as a 
combined operator with equivalent probability of being chosen each time the “dual 
operator” is called).  The term “generic local search operator” is used here to 
distinguish it from another class of local search operators in the literature [1], where 
problem dependent heuristics are usually involved in the design of the operators, e.g 
the well-known Lin-Kerninghan local search operator, using 2-opt and 3-opt 
heuristics, in the travelling salesman problem [19]. In our case, the design of 
duplication (and truncation) is solely dependent on the (TAG-based) representation, 
not on any particular application. 

4.1   Test Problems 

The test problems used in this section are simple symbolic regression problem. In our 
general symbolic regression problem [14, 24], the task is to learn a function of one 
independent variable X from 20 sample points in [-1..1]; the function and terminal set 
are F={+,-,*,/,sin, cos, exp, rlog} and T={X}. The target functions used in this paper 
are the family of 6 polynomial functions of increasing order of structural complexity: 
F1= X4+X3+X2+X, F2= X5+ X4+X3+X2+X , F3= X6+ X5+ X4+X3+X2+X, F4=X7+ X6+ 
X5+ X4+X3+X2+X, F5=X8+ X7+ X6+ X5+ X4+X3+X2+X, F6=X9+ X8+ X7+ X6+ X5+ 
X4+X3+X2+X. 

We note that there is considerable self-similarity in the structures of the above 
polynomials, and that on the interval of interest ([-1..+1]), the higher-degree 
polynomials can be approximated well by those with lower degree. Moreover, the 
structural complexity of the target function increases from F1 to F6. In fact, the higher 
degree polynomial can be recursively generated by: Fi=Fi-1*X+X (i=2,...,6). 
Therefore, the multiplication of building blocks by copying useful subcodes within 
one polynomial with low degree, might help it to accumulate more partial polynomial 
parts (such as X+X*) to become (or approximate well) a higher degree polynomial.   

4.2   Experimental Setup 

We designed a set of base runs for TAG3P and GP with typical population sizes. 
Table 1 summarises their experiment settings. The grammar G and Glex are similar to 
those in [24].  
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4.3   Experiment 1 

In the first experiment, duplication and truncation operators are used as the mutation 
operators (TAG3PM) and the results are compared with standard GP and with 
TAG3P using subtree mutation. To separate out the effect of using duplication and 
truncation as mutation operators from the pure effect of subtree crossover, one set of 
runs was allocated to TAG3P (TAGCROSS) using subtree crossover as the sole 
genetic operator.  

For each set of system and problem instances, 100 runs was allocated, making a  
total of 2400 runs. Table 2 that follows shows the proportion of success for all 
systems on the six problem instances. Figure 5 shows the cumulative frequencies of 
GP, TAG3P, TAGCROSS, and TAG3PM on these problem instances. 

Table 1.  Experiment Setup for base runs 

     Objective Find a function of one independent variable and one 
dependant variable that fits a given sample of 20 (xi, yi) 
data points, where the target functions are F1-F6.  

Terminal Operands X (the independent variable);  
Terminal Operators The binary operators are +,-,*,/. The unary operators are 

sin, cos, exp and rlog . 
Fitness Cases The sample of 20 points in the interval [-1..+1]  
Raw fitness The sum, taken over 20 fitness cases, of the errors. 
Standardized  

     Fitness 
Same as raw fitness. 

Hits The number of fitness cases for which the error is less 
than 0.01. 

Genetic Operators Tournament selection of size 3, subtree crossover and 
subtree mutation for both GP and TAG3P. 

Parameters POP_SIZE=500, MAX_GEN=51, MAX_SIZE=40 (for 
TAG3P), MAX_DEPTH=15 (for GP), Crossover 
rate=0.9, mutation rate=0.1 

Success predicate An individual scores 20 hits. 

Table 2. Proportion of success for all systems on the six problem instances 

Problem GP TAG3P TAGCROSS TAG3PM 
F1 9% 93% 93% 93% 
F2 3% 82% 87% 90% 
F3 1% 43% 61% 64% 
F4 2% 48% 43% 53% 
F5 2% 12% 27% 29% 
F6 0% 22% 22% 20% 
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4.4   Experiment 2 

In the second experiment, duplication and truncation were used as a dual generic local 
search operator, in combination with genetic search in TAG3P using subtree 
crossover and subtree mutation. The results are compared to TAG3P (using full 
population size - 500). To compensate for the fitness evaluations taken for the local 
search, the population sizes were set as 50 (LSTAG3P50) and 10 (LSTAG3P10). To 
balance this, the numbers of local search steps were 10 and 50 respectively. In other 
words, the maximal number of fitness evaluations is the same as for the TAG3P runs 
(using POPSIZE=500). Other parameter settings of TAG3P50 and TAG3P10 are 
similar to those for TAG3P. The local search strategy was stochastic hill-climbing, 
with Lamarckian inheritance (i.e. when local search finds a better individual in the 
neighbourhood of an individual, it will be replaced by the newly found individual). 
On each problem instance, each system was allocated 100 runs, making a total of 
1200 runs in this experiment. 

The following Table 3 shows the proportion of success on the six problems 
instances for all systems. Figure 6 depicts their cumulative frequencies. 

Table 3.  Proportion of success for all systems on the six problem instances 

Problem GP TAG3P LSTAG3P50 LSTAG3P10 
F1 9% 93% 93% 79% 
F2 3% 82% 91% 80% 
F3 1% 43% 85% 69% 
F4 2% 48% 74% 71% 
F5 2% 12% 59% 61% 
F6 0% 22% 67% 60% 

From the results in Table 3 and Figure 6, it is obvious that, on the problem 
instances tried, LSTAG3P outperformed TAG3P significantly, especially for target 
function with high complexity in structure (i.e with high repeated and self-similar 
patterns). It indicates that duplication and truncation, when used as a dual generic 
local search operator in combination with genetic search, can lead to significant 
improvements in TAG3P performance. Moreover, the performance is still very 
reliable when the structural complexity of the target function is scaled up. It is noted 
that the superior performance of LSTAG3P50 and LSTAG3P10 is achieved by very 
small population sizes. Furthermore, the similar performances of LSTAG3P50 and 
LSTAG3P10 on F4, F5, and F6 suggest that, under some circumstances, it is possible 
to use a smaller population, with longer local search, without affecting the 
performance of the system. It is particularly useful in reducing the sometimes huge 
population sizes of GP [16]. 

4.5   Experiment 3 

The purpose of the third experiment is to investigate wether the superior performance 
of LSTAG3P came from the power of duplication/truncation or from favouring 
exploitation in the evolutionary search balance (by reducing the population sizes). To  
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Table 4.  Proportion of success for all systems on the six problem instances 

Proble
m 

GP5
0 

TAG3P5
0 

LSTAG3P5
0 

GP1
0 

TAG3P1
0 

LSTAG3P
10 

F1 12% 70% 93% 4% 51% 79% 
F2 6% 66% 91% 2% 46% 80% 
F3 0% 48% 85% 4% 36% 69% 
F4 2% 47% 74% 4% 26% 71% 
F5 2% 32% 59% 2% 27% 61% 
F6 3% 29% 67% 2% 28% 60% 

 
                          F1                                                                       F2      

 
                                F3                                                                     F4  

 
                                                 F5                                                               F6 

Fig. 5. Cumulative of  Frequencies for all systems in experiment 1 
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                                   F1                                                                 F2 

 
                                   F3                                                                  F4 

 
                                  F5                                                                    F6 

Fig. 6. Cumulative of  Frequencies for all systems in experiment 2 

accomplish the task, the same population sizes (50 and 10) were used for TAG3P 
(TAG3P50, TAG3P10) and GP (GP50, GP10) - using subtree crossover and subtree 
mutation), with the maximal numbers of generations (MAX_GEN) being 
correspondingly increased (511 and 2551).  

Each system was allocated 100 runs for each problem instance, making a total of 
2400 runs for this experiment. Table 4 shows the results of TAG3P50 and TAG3P10 
compared with LSTAG3P50, LSTAG3P10. 

Results in table 4 show that LSTAG3P outperformed TAG3P50 and TAG3P10 (as 
well as GP50 and GP10) by a very large margin. Thus the superior performance of 
LSTAG3P in experiment 2 was certainly a result of the use of the dual duplication 
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and truncation local search operator in combination with TAG3P genetic search, and 
not from the effect of reducing the population size and therefore increasing the 
exploitation of the search. 

5   Conclusion and Future Work 

In this paper, we empirically investigated two possible roles for the duplication and 
truncation operators in TAG3P. The results show that, on a problem where 
duplication of subcodes is likely to cause fitness improvement (learning a family of 
polynomials of increasing degree), duplication and truncation are slightly better 
mutation operators than the more standard subtree mutation. However when used as 
mutation operators, they did not scale particularly well with increasing structural 
complexity of the target function. 

By contrast, when duplication and truncation were used in a second role as a dual 
generic-local search operator, they not only improved the performance of TAG3P, but 
also enabled TAG3P to scale well with the problem complexity. Moreover, they 
enabled TAG3P to solve problems with very small population sizes. 

The local search strategy used in this paper is still very naive. In future, we will 
investigate the use of duplication/truncation as generic local search operators using 
other adaptive search strategies, such as simulated annealing or tabu search. 

References 

1. Aarts E. and Lenstra J.K.: Local Search in Combinatorial Optimization, John Wiley and 
Sons (1997). 

2. Banzhaf W., Nordin P., Keller R.E., and Francone F.D.: Genetic Programming: An 
Introduction. Morgan Kaufmann Pub (1998). 

3. Drlica K.: Understanding DNA and Gene Cloning: A Guide for the Curious, John Wiley 
& Sons, USA (1984). 

4. Ferreira C.: Gene Expression Programming: A New Adaptive Algorithm for Solving 
Problems, Complex Systems 3 (2), (2001)  87-129. 

5. Ferreira C.: Mutation, Transposition, and Recombination: An Analysis of the Evolutionary 
Dynamics, in Proceedings of the 4th Int. Workshop on Frontiers in Evolutionary 
Algorithms, (2002), 614-617. 

6. Geyer-Schulz A.: Fuzzy Rule-Based Expert Systems and Genetic Machine Learning, 
Physica-Verlag (1995). 

7. Gruau F.: On Using Syntactic Constraints with Genetic Programming, In: Advances in 
Genetic Programming II, The MIT Press, (1996) 377-394. 

8. Haynes T.: Duplication of Coding Segments in Genetic Programming, Technical Report 
UTULSA-MCS-96-03, The University of Tulsa (1996). 

9. Haynes T.: Collective Adaptation: The Exchange of Coding Segments, Evolutionary 
Computation,  6 (4), (1998) 311-338. 

10. Haynes T.: Collective Adaptation: The Sharing of Building Blocks, PhD Thesis, 
Department of Mathematical and Computer Sciences, University of Tulsa, 1998. 

11. Holland J.:  Adaptation in Natural and Artificial Intelligence: An Introductory Analysis 
with Application in Biology, Control, and Artificial Intelligence, Michigan University 
Press (1975). 

12. Joshi A.K., Levy L.S., and Takahashi M.: Tree Adjunct Grammars, Journal of Computer 
and System Sciences, 10 (1), (1975) 136-163. 



 Genetic Transposition in TAG3P: The Duplication Operator 119 

 

13. Joshi A.K. and Schabes Y.: Tree Adjoining Grammars, in Handbook of Formal 
Languages, Springer-Verlag, (1997)  69-123. 

14. Koza J.: Genetic Programming: On the programming of Computers by Means of Natural 
Selection, MIT Press (1992). 

15. Koza J.: Genetic Programming II: Automatic Discoveries of Reusable Programs, MIT 
Press, 1994. 

16. Koza J., Andre D., Bennett III F.H. , and Kean M.: Genetic Programming III: Darwinian 
Invention and Problem Solving, Morgan Kaufmann (1999). 

17. Koza J.: Gene Duplication to Enable Genetic Programming to Concurrently Evolve Both 
the Architecture and Work-Performing Steps of a Computer Program, in  Proceedings of 
the Fourteenth International Joint Conference on Artificial Intelligence, (1995) 734-740. 

18. Koza J. and Andre D.: Classifying Protein Segments as Transmembrane Domains Using 
Architecture-Altering Operations in Genetic Programming, in Advances in Genetic 
Programming 2, Chapter 8,  MIT Press  (1996). 

19. Lin S. and Kerninghan B.W.: An Effective Heuristic Algorithm for the Traveling 
Salesman Problem, Operation Research, 21, (1973) 458-516. 

20. Nguyen Xuan Hoai, McKay R.I., and Abbass, H.A.: Tree Adjoining Grammars, Language 
Bias, and Genetic Programming, in Proceedings of the 6th European Conference on 
Genetic Programming (EuroGP 2003), LNCS 2610, Springer-Verlag, (2003), 335-344.   

21. Nguyen Xuan Hoai and McKay R.I.: Softening the Structural Difficulty with TAG-based 
Representation and Insertion/Deletion Operators, in Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO 2004), LNCS 3103, Springer-Verlag, 
(2004), 605-616. 

22. Nguyen Xuan Hoai and McKay R.I.: An Investigation on the Roles of Insertion and 
Deletion Operators in Tree Adjoining Grammar Guided Genetic Programming, in 
Proceedings of Congress on Evolutionary Computation (CEC 2004), IEEE Press, (2004), 
472-477. 

23. Nguyen Xuan Hoai, McKay R.I., and Essam D.: Genetic Transposition in Tree-Adjoining 
Grammar Guided Gentic Programming: The Relocation Operator, in Proceedings of the 5th 
International Conference on Simulated Evolution and Learning (SEAL 2004), IEEE Press 
(2004). 

24. Nguyen Xuan Hoai, McKay R.I., and Essam D.: Solving Symbolic Regression Problem 
with Tree Adjoining Grammar Guided Genetic Programming, Australian Journal of 
Inteligent Information Processing Systems, 7(3), (2002), 114-121. 

25. Ohno S.: Evolution by Duplication, Springer-Verlag, 1970. 
26. Schwefel H.P.: Projekt MHD-Staustrahlrohr: Experimentelle Optimierung einer 

Zweiphasenduse Teil I Technischer Bericht 11.034/68, 35, AEG Forschungsinstitut, 
Berlin, 1968. 

27. O’Neil M. and Ryan C.: Grammatical Evolution, IEEE Trans on EC, 4 (4), (2000) 349-
357, 2000. 

28. Ridley M.: Evolution, Second Edition, Blackwell Science, USA (1996). 
29. Whigham P.A.: Grammatical Bias for Evolutionary Learning, Ph.D Thesis, UNSW, 

Australia, (1996). 
30. Wong M.L. and Leung K.S.: Evolutionary Program Induction Directed by Logic 

Grammars, Evolutionary Computation, 5, (1997) 143-180. 



GP-EndChess: Using Genetic Programming to
Evolve Chess Endgame Players

Ami Hauptman and Moshe Sipper

Department of Computer Science, Ben-Gurion University, Israel
{amiha, sipper}@cs.bgu.ac.il

www.moshesipper.com

Abstract. We apply genetic programming to the evolution of strategies
for playing chess endgames. Our evolved programs are able to draw or win
against an expert human-based strategy, and draw against CRAFTY—a
world-class chess program, which finished second in the 2004 Computer
Chess Championship.

1 Introduction

Developing intelligent (or at least pseudo-intelligent) computer players of strat-
egy games is a problem which AI research have been addressing since the field’s
onset. Because excelling at strategy games has often been considered to be a
sign of intellectual excellence, many have felt that developing an intelligent game
player would represent a big step towards developing a more generally intelligent
machine [1].

The game of chess has always been viewed as an intellectual game par excel-
lence, “a touchstone of the intellect,” according to Goethe.1 The game’s com-
plexity stems from two main sources. First, the size of the search space: after the
opening phase, each player has to select the next move from approximately 50
possible moves on average. Since a single game typically consists of a few dozen
moves, the search space is enormous. A second source of complexity stems from
the amount of information contained in a single board. Since each player starts
with 16 pieces of 6 different types, and as the board comprises 64 squares, evalu-
ating a single board (a “position”) entails elaborate computation, even without
looking ahead.

Computer programs capable of playing the game of chess have been designed
for more than 40 years, starting with the first working program that was reported
in 1958 [2]. According to Russell and Norvig [3], from 1965 to 1994 there was an
almost linear increase in the strength of computer chess programs—as measured
in their performance in human-rated tournaments. This increase culminated in
the defeat in 1997 of Gary Kasparov—the former World Chess Champion—by
IBM’s special-purpose chess engine, Deep Blue (see [4])

1 Some basic chess terms are explained in the appendix.
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Deep Blue, and its offspring Deeper Blue, rely mainly on brute-force methods
to gain an advantage over the opponent, by traversing as deeply as possible the
game tree [5]. Although these programs have achieved amazing performance
levels, Noam Chomsky [6] has criticized this aspect of game-playing research as
being “about as interesting as the fact that a bulldozer can lift more than some
weight lifter.”

The number of feasible games possible (i.e., the size of the game tree), given
a board configuration, is astronomical, even if one limits oneself to endgames.
While endgames typically contain but a few pieces, the problem of evaluation
is still hard, as the pieces are usually free to move all over the board, resulting
in complex game trees—both deep and with high branching factors. Thus, we
cannot rely on brute-force methods alone. We need to develop better ways to
approximate the outcome of games with “smart” evaluation functions. The au-
tomated learning of evaluation functions is a promising research area if we are
to produce stronger artificial players [5].

We will use the Genetic Programming (GP) paradigm to evolve board-
evaluation functions, the basic idea of GP being to breed computer programs
to solve a particular problem [7]: Start with a population of random, (usually)
low-fitness individuals. Every individual plays a few games with its peers, and
is assigned a score according to its level of success (or failure), i.e., its fitness.
The next generation is stochastically constructed, based on individuals’ fitness
values. This process repeats itself until the single best individual is returned as
the solution, at the time of the evolutionary program’s termination.

This paper is organized as follows: In the next section we describe previ-
ous work on on automated methods for developing chess endgame strategies.
Section 3 describes our GP setup for the evolution of chess endgame players,
followed by results in Section 4. Finally, we end with concluding remarks and
future work in Section 5.

2 Previous Work

GP has recently been argued to deliver ”high-return, human-competitive ma-
chine intelligence” [8]. Indeed, over the years, several strategies or agents that
play games have been evolved using GP (or some other form of evolutionary
algorithm).

Ferret and Martin [1] had a computer play the ancient Egyptian board game
of Senet, by evolving board-evaluation functions using tournament-style fitness
evaluation. Gross et al. [9] introduced a system that integrates GP and Evolu-
tionary Strategies to learn to play chess. This system did not learn from scratch,
but instead a “scaffolding” algorithm that could perform the task already was
improved by means of evolutionary techniques.

Kendall and Whitwell [5] used evolutionary algorithms to tune evaluation-
function parameters. The resulting individuals were successfully matched against
commercial chess programs, but only when the lookahead for the commercial
program was strictly limited.
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Previous works only used simple board-evaluation functions as the building
blocks for the evolutionary algorithm. For example, some typical functions used
by Gross et al. [9] are: material values for the different pieces, penalty for bishops
in initial positions, bonus for pawns in center of chessboard, penalty for doubled
pawns and for backward pawns, castling bonus if this move was taken and penalty
if it was not, and rook bonus for an open line or on the same line of a passed pawn.
Kendall and Whitwell [5] used fewer board-evaluation functions, and focused on
the weights of the remaining pieces.

3 Evolving Chess Endgame Strategies Using Genetic
Programming

We evolve chess endgame strategies using Koza-style GP [7]. Each individual—
a LISP-like tree expression—represents a strategy, the purpose of which is to
evaluate a given board configuration and generate a real-valued score. The tree’s
internal nodes are called functions, and the leaves—terminals. We used simple
Boolean functions (AND, OR, NOT), and IF functions; terminals were used
to analyze certain features of the game position. We included a large number of
terminals, varying from simple ones (such as the number of moves for the player’s
king), to more complex features (for example, the number of pieces attacking
a given piece). A full description of functions and terminals used is given in
Section 3.3.

In order to better control the structure of our programs we used Strongly
Typed Genetic Programming (STGP) [10]. This method allows the user to assign
a type to a tree edge. Each function is assigned both a return type and a type for
each of its arguments; each terminal is assigned a return type. Assigning more
than one type per edge is also possible. All trees must be constructed according
to these conventions, and only compatible types are allowed to interact. Thus, a
user-defined typing scheme is imposed, although in fact all data passed within
the tree consists of real numbers. We used the ECJ GP System of Luke [11].

3.1 Board Evaluation

We wish to develop evaluation strategies that bear similarity to human board
analysis. Thus, instead of looking deep into the game tree, we traverse less nodes,
but consider each node more thoroughly. As such, our strategies use only limited
lookahead.

The current player receives as input all possible board configurations reach-
able from the current position by making one legal move (this is quite easy to
compute). After these boards are evaluated, the one that received the highest
score is selected, and that move is made. Thus, an artificial player is had by com-
bining an (evolved) board evaluator with a program that generates all possible
next moves.

Although this approach has been successfully used in several game-strategy
evolution scenarios (see [1]), it has not yet been applied to chess endgames.
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3.2 Tree Topology

Our programs play chess endgames consisting of kings, queens, and rooks (in
the future we shall also consider bishops and knights). Each game starts from a
different (random) legal position, in which no piece is attacked, e.g., two kings,
two rooks, and two queens in a KQRKQR endgame. Although at first each
program was evolved to play a different type of endgame (KRKR, KRRKRR,
KQKQ, KQRKQR, etc.), which implies using different game strategies, the same
set of terminals and functions was used for all types. Moreover, this set was also
used for our more complex runs, in which GP chess players were evolved to play
several types of endgames. Our ultimate aim is the evolution of general-purpose
strategies.

Still, as most chess players would agree, playing a winning position (e.g.,
with material advantage) is very different than playing a losing position, or an
even one (see Appendix). For this reason, each individual contains three trees:
an advantage tree, an even tree, and a disadvantage tree. These trees are used
according to the current status of the board. The disadvantage tree is smaller,
since achieving a stalemate and avoiding exchanges requires less complicated
reasoning.

3.3 Tree Nodes

While evaluating a position, an expert chess player considers various aspects of
the board. Some are simple, while others require a deep understanding of the
game. Chase and Simon found that experts recalled meaningful chess formations
better than novices [12]. This lead them to hypothesize that chess skill depends
on a large knowledge base, indexed through thousands of familiar chess patterns.

We assumed that complex aspects of the game board are comprised of simpler
units, which require less game knowledge, and are to be combined in some way.
Our chess programs use terminals, which represent those relatively simple as-
pects, and functions, which incorporate no game knowledge, but supply methods
of combining those aspects. As we used STGP, all functions and terminals were
assigned one or more of two data types: Float and Boolean. We also included a
third data type, named Query, which could be used as any of the former two.

The function set used included the If function, and simple Boolean functions.
Although our tree returns a real number, we omitted arithmetic functions, for
several reasons. First, a large part of contemporary research in the field of ma-
chine learning and game theory (in particular for perfect-information games)
revolves around inducing logical rules for learning games (for example, see [13],
[14] and [15]). Second, according to the players we consulted, while evaluating
positions involves considering various aspects of the board, some more important
than others, performing logical operations on these aspects seems natural, while
mathematical operations does not. Third, we observed that numeric functions
sometimes returned extremely large values, which interfered with subtle calcula-
tions. Therefore the scheme we used was a (carefully ordered) series of Boolean
queries, each returning a fixed value (either an ERC or a numeric terminal, see
below). See Table 1 for the complete list of functions.
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Table 1. Function set of GP individual. B: Boolean, F: Float

F=If3(B1, F1, F2) If B1 is non-zero, return F1, else return F2

B=Or2(B1, B2) Return 1 if at least one of B1, B2 is non-zero, 0 otherwise
B=Or3(B1, B2, B3) Return 1 if at least one of B1, B2, B3 is non-zero, 0 otherwise
B=And2(B1, B2) Return 1 only if B1 and B2 are non-zero, 0 otherwise
B=And3(B1, B2, B3) Return 1 only if B1, B2, and B3 are non-zero, 0 otherwise
B=Smaller(B1, B2) Return 1 if B1 is smaller than B2, 0 otherwise
B=Not(B1) Return 0 if B1 is non-zero, 1 otherwise

We developed most of our terminals by consulting several high-ranking chess
players 2. The terminal set examines various aspects of the chessboard, and may
be divided into 3 groups:

1. Float values, created using the ERC (Ephemeral Random Constants) mecha-
nism (see [7] for details). An ERC is chosen at random to be one of the following
six values ±1 · {1

2 , 1
3 , 1

4} · MAX (MAX was empirically set to 1000), and the
inverses of these numbers. This guarantees that when a value is returned after
some group of features has been identified, it will be distinct enough to engender
the outcome.

2. Simple terminals, which analyze relatively simple aspects of the board, such as
the number of possible moves for each king, and the number of attacked pieces
for each player. These terminals were derived by breaking relatively complex
aspects of the board into simpler notions. More complex terminals belong to
the next group (see below). For example, a player should capture his opponent’s
piece if it is not sufficiently protected, meaning that the number of attacking
pieces the player controls is greater than the number of pieces protecting the
opponent’s piece, and the material value of the defending pieces is equal to or
greater than the player’s. Adjudicating these considerations is not simple, and
therefore a terminal that performs this entire computational feat by itself belongs
to the next group of complex terminals.

The simple terminals comprising this second group are derived by refining
the logical resolution of the previous paragraphs’ reasoning: Is an opponent’s
piece attacked? How many of the player’s pieces are attacking that piece? How
many pieces are protecting a given opponent’s piece? What is the material value
of pieces attacking and defending a given opponent’s piece? All these questions
are embodied as terminals within the second group. The ability to easily embody
such reasoning within the GP setup, as functions and terminals, is a major asset
of GP.

Other terminals were also derived in a similar manner. See Table 2 for a com-
plete list of simple terminals. Note that some of the terminals are inverted—we
would like terminals to always return positive (or true) values, since these val-
ues represent a favorable position. This is why we used, for example, a terminal

2 The highest-ranking player we consulted was Boris Gutkin, ELO 2400, International
Master (see appendix), and fully qualified chess teacher.



GP-EndChess: Using GP to Evolve Chess Endgame Players 125

Table 2. Simple terminals. Opp: opponent, My: player

B=NotMyKingInCheck() Is the player’s king not being checked?
B=IsOppKingInCheck() Is the opponent’s king being checked?
F=MyKingDistEdges() The player’s king’s distance form the edges of the

board
F=OppKingProximityToEdges() The player’s king’s proximity to the edges of the

board
F=NumMyPiecesNotAttacked() The number of the player’s pieces that are not

attacked
F=NumOppPiecesAttacked() The number of the opponent’s attacked pieces
F=ValueMyPiecesAttacking() The material value of the player’s pieces which are

attacking
F=ValueOppPiecesAttacking() The material value of the opponent’s pieces which

are attacking
B=IsMyQueenNotAttacked() Is the player’s queen not attacked?
B=IsOppQueenAttacked() Is the opponent’s queen attacked?
B=IsMyFork() Is the player creating a fork?
B=IsOppNotFork() Is the opponent not creating a fork?
F=NumMovesMyKing() The number of legal moves for the player’s king
F=NumNotMovesOppKing() The number of illegal moves for the opponent’s

king
F=MyKingProxRook() Proximity of my king and rook(s)
F=OppKingDistRook() Distance between opponent’s king and rook(s)
B=MyPiecesSameLine() Are two or more of the player’s pieces protecting

each other?
B=OppPiecesNotSameLine() Are two or more of the opponent’s pieces protect-

ing each other?
B=IsOppKingProtectingPiece() Is the opponent’s king protecting one of his pieces?
B=IsMyKingProtectingPiece() Is the player’s king protecting one of his pieces?

evaluating the player’s king’s distance from the edges of the board (generally a
favorable feature for endgames), while using a terminal evaluating the proximity
of the opponent’s king to the edges (again, a positive feature).

3. Complex terminals. These are terminals that check the same aspects of the
board a human player would. Some prominent examples include: the terminal
OppPieceCanBeCaptured considering the capture of a piece; checking if the
current position is a draw, a mate, or a stalemate (especially important for non-
even boards); checking if there is a mate in one or two moves (this is the most
complex terminal); the material value of the position; comparing the material
value of the position to the original board—this is important since it is easier to
consider change than to evaluate the board in an absolute manner. See Table 3
for a full list of complex terminals.

Since some of these terminals are hard to compute, and most appear more
than once in the individual’s trees, we used a memoization scheme to save
time [16]: After the first calculation of each terminal, the result is stored, so
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Table 3. Complex terminals. Opp: opponent, My: player. Some of these terminals
perform lookahead, while others compare with the original board

F=EvaluateMaterial() The material value of the board
B=IsMaterialIncrease() Did the player capture a piece?
B=IsMate() Is this a mate position?
B=IsMateInOne() Can the opponent mate the player after this

move?
B=OppPieceCanBeCaptured() Is it possible to capture one of the opponent’s

pieces without retaliation?
B=MyPieceCannotBeCaptured() Is it not possible to capture one of the player’s

pieces without retaliation?
B=IsOppKingStuck() Do all legal moves for the opponent’s king advance

it closer to the edges?
B=IsMyKingNotStuck() Is there a legal move for the player’s king that

advances it away from the edges?
B=IsOppKingBehindPiece() Is the opponent’s king two or more squares behind

one of his pieces?
B=IsMyKingNotBehindPiece() Is the player’s king not two or more squares be-

hind one of my pieces?
B=IsOppPiecePinned() Is one or more of the opponent’s pieces pinned?
B=IsMyPieceNotPinned() Are all the player’s pieces not pinned?

that further calls to the same terminal (on the same board) do not repeat the
calculation. Memoization greatly reduced the evolutionary run-time.

3.4 Fitness Evaluation

As we used a competitive evaluation scheme, the fitness of an individual was
determined by its success against its peers. We used the random-2-ways method
(see [17] for full details), in which each individual plays against a fixed num-
ber of randomly selected peers (typically 5). Each of these encounters entails a
fixed number of games, each starting from a randomly generated position. Since
random starting positions can sometimes be uneven (for example, allowing the
starting player to attain a capture position), every starting position was played
twice, each player playing both black and white. This way a better starting posi-
tion could benefit both players and the tournament was less biased. In addition,
in each encounter several games were played, to further reduce the element of
chance.

The score for each game is derived from the outcome of the game. Players
that manage to mate their opponents receive more points than those that achieve
only a material advantage. Draws are rewarded by a score of low value and losses
entail no points at all.

The final fitness for each player is the sum of all points earned in the entire
tournament for that generation. We used the standard reproduction, crossover,
and mutation operators, as in [7]. The major parameters were: population size
– 80, generation count – between 150 and 250, reproduction probability – 0.35,
crossover probability – 0.5, and mutation probability – 0.15 (including ERC).
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Fig. 1. Left: Results against a strategy defined by a chess Master. The three graphs
show the average score over time of the best run of 50 runs carried out, for three types
of endgames: KRKR, KRRKRR, KRQKRQ. A point represents the score of the best
individual at that time, pitted in a 150-game tournament against the human-defined
strategy. Right: Results against CRAFTY. The three graphs show the average score
over time of the best run of 15 runs carried out, for three types of endgames: KRKR,
KQKQ, KQRKQR. A point represents the score of the best individual at that time,
pitted in a 50-game tournament against CRAFTY

4 Results

We conducted several experiments to test our evolving chess players. The scor-
ing method was based on the one used in chess tournaments: victory—1 point,
draw—1

2 point, loss—0 points. In order to better differentiate our players, we
rewarded 3

4 points for a material advantage (without mating the opponent).
The final score is the sum of all scores a player has received, divided by the

number of games. This way, a player who always mates its opponent will receive
a perfect score of 1. The score for a player that played against an opponent of
comparable strength (where most games end in a draw), is 1/2 on average.

4.1 Experiment 1: Competing Against a Human-Defined Strategy

As noted above, we developed most of our terminals by consulting several high-
ranking chess players. In order to evaluate our system, we wished to test our
evolved strategies against some of these players. Because we needed to play
thousands of games in every run, these could not be conducted manually, but
instead we programmed an optimal strategy, based on the guidance from the
players we consulted. We wrote this evaluation program using the functions and
terminals of our GP system.

During evolution, our chess programs competed against each other. However,
every 10 generations the best individual was extracted and pitted in a 150-
game tournament against the human-defined strategy. The results are depicted
in Figure 1, showing runs for KRKR, KRRKRR and KQRKQR, respectively.

These figures clearly show that starting from a low level of performance, chess
players evolve to play as good as high-ranking humans for all groups of endgames,
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Master 6.00 2.00 68.00
CRAFTY 2.00 4.00 72.00

Fig. 2. Left: Results for multiple-endgame runs—wherein all endgames were used dur-
ing evolution—against both CRAFTY and the Master-defined strategy. Each graph
shows the average score over time of the best run of 20 runs carried out. A point
represents the score of the best individual at that time, pitted in a 50-game tourna-
ment against CRAFTY, or a 150-game against the Master. Right: Percent of wins,
advantages, and draws for best tournament of run (i.e., fitness peak of graph)

in one case even going beyond a draw to win (KQRKQR endgame, where a high
score of 0.63 was attained). Improvement was rapid, typically requiring only a
few dozens of generations (about 15 hours on a standard workstation).

4.2 Experiment 2: Competing Against a World-Class Chess Engine

Having attained good results against a human-defined strategy based on expert
chess players, we went one step further and competed against a highly powerful
chess engine. For this task, we used the CRAFTY engine (version 19.01) by
Hyatt 3. CRAFTY is a state-of-the-art chess engine, using a typical brute-force
approach, with a fast evaluation function, NegaScout search, and all the standard
enhancements [18]. CRAFTY finished second at the 12th World Computer Speed
Chess Championship, held in Bar-Ilan University on July 2004. According to
www.chessbase.com, CRAFTY has a rating of 2614 points, which places it at the
human Grandmaster level. CRAFTY is thus, undoubtedly, a worthy opponent.

As expected, CRAFTY proved to be a formidable opponent, constantly mat-
ing the GP opponent at early generations. However, during the process of evolu-
tion, substantial improvement was observed to occur. As shown in Figure 1, our
program managed to achieve near-draw scores, even for the complex KQRKQR
endgame. Considering our evolved 2-lookahead programs’ competing against a
world-class chess player, our method seems quite viable and promising.

4.3 Experiment 3: Multiple-Endgame Runs

Aiming for general-purpose strategies, this third experiment involved the playing
of one game of each type (rather than a single type)—both during evolution

3 CRAFTY’s source code is available at ftp://ftp.cis.uab.edu/pub/hyatt
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and in the test tournaments. Evolved players were pitted against the Master-
defined strategy and CRAFTY. As can be seen in Figure 2, near-draw scores
were achieved under these conditions as well. We observed that performance
kept improving and are confident that it would continue doing so with added
computational resources.

5 Concluding Remarks and Future Work

We presented a method by which chess endgame players may be evolved to
successfully hold their own against excellent opponents. One of the major prima
facie problems with our scheme is its complexity, as evidenced by Tables 1, 2,
and 3. In the time-honored tradition of computer science, we argue that this
is not a bug but rather a feature—to be more precise, a somewhat overlooked
feature of genetic programming.

We believe that GP represents a viable means to automatic programming,
and perhaps more generally to machine intelligence, in no small part due to
its being cooperative with humans. More than many other adaptive search tech-
niques (e.g., genetic algorithms, artificial neural networks, ant algorithms), the
GPer, owing to GP’s representational affluence and openness, is better posi-
tioned to imbue the genomic language with his or her own intelligence. While
artificial-intelligence (AI) purists may wrinkle their noses at this, taking the
AI-should-emerge-from-scratch stance, we argue that a more practical path to
AI involves man-machine cooperation. GP is a forerunning candidate for the
‘machine’ part.

We did not design our genome (Tables 1, 2, 3) in one fell swoop, but rather
through an incremental, interactive process, whereby man (represented by the
humble authors of this paper) and machine (represented by man’s university’s
computers) worked hand-in-keyboard. To wit, we began our experimentation
with small sets of functions and terminals, which were revised and added upon
through our examination of evolved players and their performance and through
consultation with high-ranking chess players. GP’s design cooperativeness, often
overlooked, is thus perhaps one of its major boons.

In addition, the number of terminals we used is small, compared to the
number of patterns used by chess experts when evaluating a position: Accord-
ing to Simone and Gilmartin [19] this number is close to 100,000. Since most
pattern-based programs nowadays are considered to be far from competitive
(see [13]), the results we obtained may imply that we have made a step to-
wards developing a program that has more in common with the way humans
play chess.

In the future we aim to follow a number of paths: 1) improve the evolved
programs’ performance against the above and other endgames, 2) branch out
beyond endgames, and 3) analyze the evolved cognition as to its resemblance
and difference from human cognition.
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Appendix: Brief Glossary of Basic Chess Terms

(More at www.arkangles.com)
Material value. Sum of all numerical values (see Point Count) for player’s

pieces (which are given positive values), and the opponent’s (negative values).
Point count. Queen is worth 9 points, rooks – 5 points, bishops – 3 or 3.25

points, knights – 3 points, and pawns – 1 point. King is typically assigned an
infinite value.

Advantage. When the current configuration of the game favors one side over
another; includes: material advantage, permanent advantage, positional advan-
tage, and temporary advantage.

Capture. Moving a piece to a square occupied by an enemy piece, thereby
removing the enemy piece from the board.

Fork. A form of double attack where one piece threatens two enemy pieces
at the same time. In a triple fork, three enemy pieces are threatened.

Endgame. The final phase of the game when there are few pieces left on the
board. Endgame abbreviations are used to represent the remaining pieces (e.g.,
KRKR).

Ranking chess players. Both professional and amateur chess players may
obtain a nationally (or internationally) recognized numerical rating (sometimes
referred to as ELO). Independently, professional players may earn titles, gained
in special official tournaments, in which title-holders must participate. A title,
once earned, is the player’s for life, while the point rating can oscillate. The
lowest international title is Master (usually not gained before the player reaches
ELO 2200). The highest titles are International Master (IM) and Grandmaster
(GM). In 2003 there were only about 3000 IMs and GMs worldwide.
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Abstract. We apply genetic programming to the evolution of strategies
for playing the game of backgammon. Pitted in a 1000-game tourna-
ment against a standard benchmark player—Pubeval—our best evolved
program wins 58% of the games, the highest verifiable result to date.
Moreover, several other evolved programs attain win percentages not far
behind the champion, evidencing the repeatability of our approach.

1 Introduction

The majority of learning software for backgammon is based on artificial neural
networks, which usually receive as input the board configuration and produce as
output the suggested next best move. The main problem lies with the network’s
fixed topology: The designer must usually decide upon this a priori, whereupon
only the internal synaptic weights change. (Nowadays, one sometimes uses evo-
lutionary techniques to evolve the topology [1]).

The learning technique we have chosen to apply is Genetic Programming
(GP), by which computer programs can be evolved [2]. A prime advantage of GP
over artificial neural networks is the automatic development of structure, i.e., the
program’s “topology” need not be fixed in advance. In GP we start with an initial
set of general- and domain-specific features, and then let evolution determine
(evolve) the structure of the calculation (in our case, a backgammon-playing
strategy). In addition, GP readily affords the easy addition of control structures
such as conditional and loop statements, which may also evolve automatically.

This paper details the evolution of highly successful backgammon players via
genetic programming. In the next section we present previous work on machine-
learning approaches to backgammon. In Section 3 we present our algorithm for
evolving backgammon-playing strategies using genetic programming. Section 4
presents results, followed by Section 5, wherein we conclude and describe future
work.

2 Previous Work

The application of machine-learning techniques to obtain strong backgammon
players has been done both in academia and industry. The best commercial

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 132–142, 2005.
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products to date are Jellyfish [3] and TD-Gammon [4]. Being commercial, with
their innards unavailable for any scrutiny, we shall remain herein in the academic
arena. Our benchmark competitor will thus be the freely available Pubeval—
which has become a standard yardstick used by those applying AI techniques to
backgammon. Pubeval is quite a strong machine player, trained on a database
of expert preferences using comparison training [5].

Tesauro’s approach is based on the Temporal Difference method, used to train
a neural network through a self-playing model—i.e., learning is accomplished by
programs playing against themselves and thus improving [4].

In 1997, Pollack, Blair, and Land [5] presented HC-Gammon, a much simpler
Hill-Climbing algorithm that also uses neural networks. Under their model the
current network is declared ‘Champion’, and by adding Gaussian noise to the
biases of this champion network a ‘Challenger’ is created. The Champion and the
Challenger then engage in a short tournament of backgammon; if the Challenger
outperforms the Champion, small changes are made to the Champion biases in
the direction of the Challenger biases.

Another interesting work is that of Sanner et al. [6], whose approach is based
on cognition (specifically, on the ACT-R theory of cognition [7]). Rather than
trying to analyze the exact board state, they defined a representational abstrac-
tion of the domain, consisting of general backgammon features such as blocking,
exposing, and attacking. They maintain a database of feature neighborhoods,
recording the statistics of winning and losing for each such neighborhood. All
possible moves are encoded as sets of the above features; then, the move with
the highest win probability (according to the record obtained so far) is selected.

Finally, Qi and Sun [8] presented a genetic algorithm-based multi-agent re-
inforcement learning bidding approach (GMARLB). The system comprises sev-
eral evolving teams, each team composed of a number of agents. The agents
learn through reinforcement using the Q-learning algorithm. Each agent has two
modules, Q and CQ. At any given moment only one member of the team is
in control—and chooses the next action for the whole team. The Q module se-
lects the actions to be performed at each step, while the CQ module determines
whether the agent should continue to be in or relinquish control. Once an agent
relinquishes control, a new agent is selected through a bidding process, whereby
the member who bids highest becomes the new member-in-control.

3 Evolving Backgammon-Playing Strategies Using
Genetic Programming

We use Koza-style GP [2] to evolve backgammon strategies. In GP, a population
of individuals evolves, where an individual is composed of LISP sub-expressions,
each sub-expression being a LISP program constructed from functions and ter-
minals. The functions are usually arithmetic and logical operators that receive
a number of arguments as input and compute a result as output; the terminals
are zero-argument functions that serve both as constants and as sensors. Sensors
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are a special type of function that query the domain environment (in our case,
backgammon board configurations).

In order to improve the performance of the GP system, we used Strongly
Typed Genetic Programming (STGP) [9], which allows to add data types and
data-type constraints to the LISP programs, thereby affording the evolution of
more powerful and useful programs.

In STGP, each function has a return type and argument types (if there are
any arguments). In our implementation a type can be either an atomic type,
which is a symbol, or a set type, which is a group of atomic types. A node n1 can
have a child node n2 if and only if the return type of n2 is compatible with the
appropriate argument type of n1. An atomic type is compatible with another
atomic type if they are both identical, and a set type is compatible with another
set type if they share at least one identical atomic type.

Note that the types are mere symbols and not real data types; their purpose
is to force structural constraints on the LISP programs. The data passed between
nodes consists only of real numbers.

Board Evaluation. Tesauro [4] noted that due to the presence of stochasticity in
the form of dice, backgammon has a high branching factor, therefore rendering
deep search strategies impractical. Thus, we opted for the use of a flat evaluator:
after rolling the dice, generate all possible next-move boards, evaluate each one
of them, and finally select the board with the highest score.

This approach has been used widely by neural network-based players and—
as shown below—it can be used successfully with genetic programming. In our
model, each individual is a LISP program that—using the sensors—receives a
backgammon board configuration as input and returns a real number that rep-
resents the board score.

An artificial player is had by combining an (evolved) board evaluator with a
program that generates all next-moves given the dice values.

Program Architecture. The game of backgammon can be observed to consist of
two main stages: the ‘contact’ stage, where the two players can hit each other,
and the ‘race’ stage, where there is no contact between the two players. During
the contact stage, we expect a good strategy to block the opponent’s progress
and minimize the probably of getting hit. On the other hand, during the race
stage, blocks and blots are of no import, rather, one aims to select moves that
lead to the removal of a maximum number of pieces off the board.

This observation has directed us in designing the genomic structure of in-
dividuals in the population. Each individual contains a contact tree and a race
tree. When a board is evaluated, the program checks whether there is any contact
between the players and then evaluates the tree that is applicable to the current
board state. The function set of the contact tree is richer and contains various
general and specific board query functions. The function set of the race tree is
much smaller and contains only functions that examine the checkers’ positions.
This is because at the race phase, the moves of each player are independent of
the opponent’s status, and thus are much simpler.
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Functions and Terminals. Keeping in mind our use of STGP, we need to describe
not only the functions and terminals but also their type constraints. We use two
atomic types: Float and Boolean. We also use one set type—Query—that includes
both atomic types.

The function set contains no domain-specific operators, but only arithmetic
and logical ones, so we use the same function set for both contact and race trees.
The function set is given in Table 1.

Table 1. Function set of the contact and race trees

F=Add(F, F) Add two real numbers
F=Sub(F, F) Subtract two real numbers
F=Mul(F, F) Multiply two real numbers
F=If(B, F, F) If first argument evaluates to a non-zero value, return value

of second argument, else return value of third argument
B=Greater(F, F) If first argument is greater than second, return 1, else return

0
B=Smaller(F, F) If first argument is smaller than second, return 1, else return

0
B=And(B, B) If both arguments evaluate to a non-zero value, return 1, else

return 0
B=Or(B, B) If at least one of the arguments evaluates to a non-zero value,

return 1, else return 0
B=Not(B) If argument evaluates to zero, return 1, else return 0

With terminals we use the ERC (Ephemeral Random Constant) mechanism,
as described in Koza [2]. An ERC is a node that—when first initialized—is
assigned a constant value from a given range; this value does not change during
evolution, unless a mutation operator is applied.

The terminal set is specific to our domain (backgammon), and contains three
types of functions:

1. The Float-ERC function calls upon ERC directly. When created, the ter-
minal is assigned a constant, real-number value, which becomes the return
value of the terminal.

2. The board-position query terminals use the ERC mechanism to query a
specific location on the board. When initialized, a value between 0 and 25 is
randomly chosen, where 0 specifies the bar location, 1-24 specify the inner
board locations, and 25 specifies the off-board location (Figure 1).
The term ‘Player’ refers to the contender whose turn it is, while ‘Enemy’
refers to the opponent. After completing the move, the contenders are swapped.
When a board query terminal is evaluated, it refers to the board location
that is associated with the terminal, from the player’s point of view.

3. The last type of terminal is a function that provides general information
about the board as a whole.
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Fig. 1. Initial backgammon configuration. The White player’s home positions are la-
beled 19-24, and the Black player’s home positions are labeled 1-6

The terminal set for contact trees is given in Table 2 and that for race trees
in Table 3.

Fitness Measure. The evolutionary process is internally driven, i.e., the evolving
strategies play against each other (and not against an external opponent). As
such, the fitness of an individual is relative to its cohorts. To avoid overly lengthy
evaluation times, methods such as Round Robin—where each individual is pitted
against all others—were avoided. Through experimentation we concluded that
a good evaluation method is the Single Elimination Tournament: Start with a
population of n individuals, n being a power of two. Then, divide the individuals
into n

2 arbitrary pairs, and let each pair engage in a relatively short tournament
of 50 games. Finally, set the fitness of the n

2 losers to 1
n . The rest n

2 winners
are divided into pairs again, engage in tournaments as before, and the losers
are assigned fitness values of 1

n/2 . This process continues until one champion
individual remains. Thus, the more tournaments an individual “survives,” the
higher its fitness.

Breeding Strategy. After the evaluation stage, we need to create the next gen-
eration of individuals from the current generation. This process involves two
primary operators: breeding and selection. Of a finite set of breeding operators
(described below), one is chosen probabilistically; then, one or two individuals
(depending on the breeding operator) are selected from the current generation.
Finally, the breeding operator is applied to the selected individual(s).

We use four breeding operators in our model, either unary (operating on
one individual) or binary (operating on two individuals): reproduction, sub-tree
crossover, point mutation, and MutateERC :

• The unary reproduction operator is the simplest one: copy one individual to
the next generation with no modifications. The main purpose of this operator
is to preserve a small number of good individuals.
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Table 2. Terminal set of the contact tree. Note that zero-argument functions—which
serve both as constants and as sensors—are considered as terminals

F=Float-ERC ERC – random real constant in range [0,5]
Q=Player-Exposed(n) If player has exactly one checker at location n, return 1,

else return 0
Q=Player-Blocked(n) If player has two or more checkers at location n, return

1, else return 0
Q=Player-Tower(n) If player has h or more checkers at location n (where

h ≥ 3), return h − 2, else return 0
Q=Enemy-Exposed(n) If enemy has exactly one checker at location n, return 1,

else return 0
Q=Enemy-Blocked(n) If enemy has two or more checkers at location n, return

1, else return 0
F=Player-Pip Return player pip-count divided by 167 (pip-count is the

number of steps a player needs to move in order to win
the game. This value is normalized through division by
167—the pip-count at the beginning of the game)

F=Enemy-Pip Return enemy pip-count divided by 167
F=Total-Hit-Prob Return sum of hit probability over all exposed player

checkers
F=Player-Escape Measure the effectiveness of the enemy’s barrier over his

home positions. For each enemy home position that does
not contain an enemy block, count the number of dice
rolls that could potentially lead to the player’s escape.
This value is normalized through division by 131—the
number of ways a player can escape when the enemy has
no blocks

F=Enemy-Escape Measure the effectiveness of the player’s barrier over his
home positions using the same method as above

Table 3. Terminal set of the race tree

F=Float-ERC ERC – random real constant in range [0,5]
Q=Player-Position(n) Return number of checkers at location n

• The binary crossover operator randomly selects an internal node in each of
the two individuals (belonging to corresponding trees—either race or con-
tact) and then swaps the sub-trees rooted at these nodes.

• The unary mutation operator randomly selects one node from one of the
trees, deletes the subtree that is rooted at that node and grows a new sub-
tree instead. (Crossover and mutation are described in detail in Koza [2].)

• The unary MutateERC operator selects one random node and then mutates
every ERC within the sub-tree that is rooted at that node. The mutation
operation we used is the addition of a small Gaussian noise to the ERC. We
used this breeding operator to achieve two goals: first, this is a convenient
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way to generate new constants as evolution progresses; and, second, it helps
to balance the constants on good individuals. The MutateERC operation is
described in [10].

We chose a selection method that supports relative fitness—tournament se-
lection, as described in Koza [2]: randomly choose a small subset of individuals,
and then select the one with the best fitness. This method is simple, respects
the relative fitness scale, and also affords a fair chance of selecting low-fitness
individuals in order to prevent early convergence.

4 Results

For benchmark purposes we used Pubeval—a free, public-domain board evalu-
ation function written by Tesauro [11]. The program—which plays very well—
seems to have become the de facto yardstick used by the growing community of
backgammon-playing program developers. Several researchers in the field have
pitted their own creations against Pubeval.

Our population consisted of 128 individuals, which evolved for 500 genera-
tions. We used the ECJ GP System of Luke [12]. We repeated the experiment 20
times and calculated the average, minimum, and maximum benchmark values
every five generations. Figure 2 shows the benchmark curve of our individuals.
Table 4 shows how our best evolved players fared against Pubeval, alongside the
performance of the other approaches described in Section 2.

To get an idea of the human-competitiveness of our players we referred to the
HC-gammon statistics (demo.cs.brandeis.edu/hcg/stats1.html), according

Table 4. Comparison of backgammon players. GP-Gammon-i designates the best GP
strategy evolved at run i, which was tested in a tournament of 1000 games against
Pubeval. Only the top 5 runs are shown (out of 20). For ACT-R-Gammon and HC-
Gammon, the values cited are the best values obtained. For GMARLB-gammon, the
authors cited a best value of 56%, apparently a fitness peak obtained during one
evolutionary run, computed over 50 games. This is too short a tournament and
hence we cite their average value. Indeed, we were able to obtain win percentages
of over 65% (!) for randomly selected strategies over 50-game tournaments, a result
which dwindled to 40-45% when the tournament was extended to 1000 games

Player % Wins vs. Pubeval
GP-Gammon-1 56.8
GP-Gammon-2 56.6
GP-Gammon-3 56.4
GP-Gammon-4 55.7
GP-Gammon-5 54.6
GMARLB-Gammon [8] 51.2
ACT-R-Gammon [6] 45.94
HC-Gammon [5] 40.00
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Fig. 2. Benchmark curve. The benchmark score of an individual equals the score it
attained in a 1000-game tournament against Pubeval, divided by the sum of scores
gained by both the individual and Pubeval

to which HC-Gammon wins 58% of the games when counting abounded games
as wins, and 38% when not counting them. Considering that HC-Gammon wins
40% of the games versus Pubeval, we expect—by transitivity—that GP-gammon
(with win percentage of 56% vs. Pubeval) is a very strong player in human terms.

On a standard workstation our system plays about 700–1,000 games a minute.
As can be seen in Figure 2, to achieve good asymptotic performance our method
requires on the order of 500,000–2,000,000 games (100–300 generations) per
evolutionary run—about 2-3 days of computation. In comparison, GMARLB-
Gammon required 400,000 games to learn, HC-Gammon – 100,000, and ACT-
R-Gammon – 1000 games. The latter low figure is due to the explicit desire by
ACT-R-Gammon’s authors to model human cognition, their starting point be-
ing that a human can at best play 1,000 games a month (should he forego all
other activities). Note that as opposed to the other individual-based methods
herein discussed (e.g., employing one or a few neural networks), our approach is
population based; the learning cost per individual is therefore on the order of a
few thousand games.

Our primary goal herein has not been to reduce computational cost, but to
attain the best machine player possible. As quipped by Milne Edwards (and
quoted by Darwin in Origin of Species), “nature is prodigal in variety, but nig-
gard in innovation.” With this in mind, we did not mind having our processes
run for a few days. After all, backgammon being a hard game to play expertly
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(our reason for choosing it), why should a machine learn rapidly? (see also [13])
Be that as it may, we do plan to tackle the optimization issue in the future.

5 Concluding Remarks and Future Work

As is often the case with genetic programming, evolved individuals are highly
complex, especially when the problem is a hard one—e.g., backgammon. Much
like a biologist examining naturally evolved genomes, one cannot divine the
workings of the program at a glance. Thus, we have been unable—despite in-
tense study—to derive a rigorous formulation concerning the structure and con-
tribution of specific functions and terminals to the success of evolved individuals
(this we leave for future work). Rigorousness aside, though, our examination of
many evolved individuals has revealed a number of interesting behaviors and
regularities, hereafter delineated.

Recall that our function set contains two types of board-query functions:
those that perform specific board-position queries (e.g., Player-Exposed(n) and
Player-Blocked(n)), and those that perform general board queries (e.g., Enemy-
Escape and Total-Hit-Prob). These latter are more powerful, and, in fact, some
of them can be used as stand-alone heuristics (albeit very weak) for playing
backgammon.

We have observed that general query functions are more common than
position-specific functions. Furthermore, GP-evolved strategies seem to “ignore”
some board positions. This should come as no surprise: the general functions pro-
vide useful information during most of the game, thus inducing GP to make use
of them often. In contrast, information pertaining to a specific board position
has less effect on overall performance, and is relevant only at a few specific moves
during the game.

We surmise that the general functions form the lion’s share of an evolved
backgammon strategy, with specific functions used to balance the strategy by
catering for (infrequently encountered) situations. In some sense GP strategies
are reminiscent of human game-playing: humans rely on general heuristics (e.g.,
avoid hits, build effective barriers), whereas local decisions are made only in
specific cases. (As noted above, the issue of human cognition in backgammon
was central to the paper by Sanner et al. [6].)

Our model divides the backgammon game into two main stages, thus entailing
two types of trees. A natural question arising is that of refining this two-fold
division into more sub-stages. The game dynamics may indeed call for such a
refined division, with added functions and terminals specific to each game stage.

However, it is unclear how this refining is to be had: Any (human) suggestion
beyond the obvious two-stage division is far from being obvious—or correct.
One possible avenue of future research is simply to let GP handle this question
altogether and evolve the stages themselves. For example, we can use a main
tree to inspect the current board configuration and decide which tree should be
used for the current move selection. These ‘specific’ trees would have their own
separately evolving function and terminal sets. Automatically defined functions
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(ADFs) [14] and architecture-altering operations [15] will most likely come in
quite handy here.1

GP is known to be computer-intensive, being both memory- and time-
avaricious. Witness Koza’s use of a 1,000-Pentium cluster2 and populations of
up to 10,000,000 individuals [16]. Unfortunately, our own resources were limited
to but a few workstations. We believe quite firmly that upping the resources
will lead to the evolution of much better players. Part of our belief stems from
a few multi-cpu experiments, which we performed on a cluster of workstations
that were made available to us for a short period of time. Jumping at the oc-
casion, we were able to attain a win percentage of 58% against Pubeval—the
best known result to date. Hopefully, we will gain access to more resources in
the future, thereby attempting to improve our players yet further.

Our application of an adaptive—so-called “intelligent”—search technique
in the arena of games is epitomic of an ever-growing movement. Our evolved
backgammon players are highly successful, able to beat previous automatically
obtained strategies.
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Abstract. This paper describes the first attempt to introduce evolution-
arily designed players into the international Robocode league, a simulation-
based game wherein robotic tanks fight to destruction in a closed arena.
Using genetic programming to evolve tank strategies for this highly ac-
tive forum, we were able to rank third out of twenty-seven players in the
category of HaikuBots. Our GPBot was the only entry not written by a
human.

“I wonder how long handcoded algorithms will remain on top.”
Developer’s comment at a Robocode discussion group,

robowiki.net/cgi-bin/robowiki?GeneticProgramming

1 Introduction

The strife between humans and machines in the arena of intelligence has fertil-
ized the imagination of many an artificial-intelligence (AI) researcher, as well as
numerous science fiction novelists. Since the very early days of AI, the domain of
games has been considered as epitomic and prototypical of this struggle. Design-
ing a machine capable of defeating human players is a prime goal in this area:
From board games, such as chess and checkers, through card games, to computer
adventure games and 3D shooters, AI plays a central role in the attempt to see
machine beat man at his own game—literally.

Program-based games are a subset of the domain of games in which the
human player has no direct influence on the course of the game; rather, the
actions during the game are controlled by programs that were written by the
(usually human) programmer. The program responds to the current game en-
vironment, as captured by its percepts, in order to act within the simulated
game world. The winner of such a game is the programmer who has provided
the best program; hence, the programming of game strategies is often used to
measure the performance of AI algorithms and methodologies. Some famous ex-
amples of program-based games are RoboCup (www.robocup.org), the robotic
soccer world championship, and CoreWars (corewars.sourceforge.net), in
which assembly-like programs struggle for limited computer resources.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 143–154, 2005.
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While the majority of the programmers actually write the code for their
players, some of them choose to use machine-learning methods instead. These
methods involve a process of constant code modifications, according to the na-
ture of the problem, in order to achieve as best a program as possible. If the
traditional programming methods focus on the ways to solve the problem (the
‘how’), machine-learning methods focus on the problem itself (the ‘what’)—to
evaluate the program and constantly improve the solution.

We have chosen the game of Robocode (robocode.alphaworks.ibm.com), a
simulation-based game in which robotic tanks fight to destruction in a closed
arena. The programmers implement their robots in the Java programming lan-
guage, and can test their creations either by using a graphical environment in
which battles are held, or by submitting them to a central web site where online
tournaments regularly take place; this latter enables the assignment of a rela-
tive ranking by an absolute yardstick, as is done, e.g., by the Chess Federation.
The game has attracted hundreds of human programmers and their submitted
strategies show much originality, diversity, and ingenuity.

One of our major objectives is to attain what Koza and his colleagues have
recently termed human-competitive machine intelligence [1]. According to Koza
et al. [1] an automatically created result is human-competitive if it satisfies one
or more of eight criteria (p. 4; ibid), the one of interest to us here being:

H. The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written com-
puter programs).

Since the vast majority of Robocode strategies submitted to the league were
coded by hand, this game is ideally suited to attain the goal of human-
competitiveness.

The machine-learning method we have chosen to use is Genetic Programming
(GP), in which the code for the player is created through evolution [2]. The code
produced by GP consists of a tree-like structure (similar to a LISP program),
which is highly flexible, as opposed to other machine-learning techniques (e.g.,
neural networks).

This paper is organized as follows: Section 2 describes previous work. Sec-
tion 3 delineates the Robocode rules and Section 4 presents our GP-based
method for evolving Robocode strategies, followed by results in Section 5. Fi-
nally, we present concluding remarks and future work in Section 6.

2 Previous Work

In a paper published in 2003, Eisenstein described the evolution of Robocode
players using a fixed-length genome to represent networks of interconnected com-
putational units, which perform simple arithmetic operations [3]. Each element
takes its input either from the robot’s sensors or from another computational
unit. Eisenstein was able to evolve Robocode players, each able to defeat a single
opponent, but was not able to generalize his method to create players that could
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beat numerous adversaries and thus hold their own in the international league.
This latter failure may be due either to problems with the methodology or to
lack of computational resources—no conclusions were provided.

Eisenstein’s work is the only recorded attempt to create Robocode play-
ers using GP-like evolution. The number of works that have applied machine-
learning techniques to design Robocode players is meager, mostly ANN-based
(Artificial Neural Network), and produced non-top-ranked strategies. In most
cases the ANN controls only part of the robot’s functionality, mainly the tar-
geting systems. We found no reports of substantive success of ANNs over hand-
coded robots. Applications of GP in robotics have been studied by several re-
searchers, dating back to one of Koza’s original experiments—evolving wall-
following robots [4] (a full review of GP works in the field of robotics is beyond
the scope of this paper).

3 Robocode Rules

A Robocode player is written as an event-driven Java program. A main loop
controls the tank activities, which can be interrupted on various occasions, called
events. Whenever an event takes place, a special code segment is activated,
according to the given event. For example, when a tank bumps into a wall, the
HitWallEvent will be handled, activating a function named onHitWall(). Other
events include: hitting another tank, spotting another tank, and getting hit by
an enemy shell.

There are five actuators controlling the tank: movement actuator (forward
and backward), tank-body rotation actuator, gun-rotation actuator, radar-
rotation actuator, and fire actuator (which acts as both trigger and firepower
controller).

As the round begins, each tank of the several placed in the arena is assigned a
fixed value of energy. When the energy meter drops to zero, the tank is disabled,
and—if hit—is immediately destroyed. During the course of the match, energy
levels may increase or decrease: a tank gains energy by firing shells and hitting
other tanks, and loses energy by getting hit by shells, other tanks, or walls.
Firing shells costs energy. The energy lost when firing a shell, or gained, in case
of a successful hit, is proportional to the firepower of the fired shell.

The round ends when only one tank remains in the battlefield (or no tanks
at all), whereupon the participants are assigned scores that reflect their perfor-
mance during the round. A battle lasts a fixed number of rounds.

In order to test our evolved Robocode players and compare them to human-
written strategies, we had to submit them to the international league. The league
comprises a number of divisions, classified mainly according to allowed code size.
Specifically, we aimed for the one-on-one HaikuBot challenge, in which the play-
ers play in duels, and their code is limited to four instances of a semicolon (four
lines), with no further restriction on code size (robocode.yajags.com). Since
GP naturally produces long lines of code, this league seemed most appropriate
for our research. Moreover, a code size-limited league places GP at a disadvan-
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tage, since, ceteris paribus, GP produces longer programs due to much junk
“DNA” (which a human programmer does not produce—usually).

4 Evolving Robocode Strategies Using Genetic
Programming

We used Koza-style GP [2], in which a population of individuals evolves. An
individual is represented by an ensemble of LISP expressions, each composed of
functions and terminals. The functions we used are mainly arithmetic and logical
ones, which receive several arguments and produce a numeric result. Terminals
are zero-argument functions, which produce a numerical value without receiving
any input. The terminal set is composed of zero-argument mathematical func-
tions, robot perceptual data, and numeric constants. The list of functions and
terminals is given in Table 1, and will be described below.

As part of our research we examined many different configurations for the
various GP characteristics and parameters. We have tried, for instance, to use
Strongly Typed Genetic Programming (STGP) [5], in which functions and ter-
minals differ in types and are restricted to the use of specific types of inputs;
another technique that we inspected was the use of Automatically Define Func-
tions (ADFs) [6], which enables the evolution of subroutines. These techniques
and a number of others proved not to be useful for the game of Robocode, and
we concentrate below on a description of our winning strategy.

Program Architecture. We decided to use GP to evolve numerical expressions
that will be given as arguments to the player’s actuators. As mentioned above,
our players consist of only four lines of code (each ending with a semicolon).
However, there is much variability in the layout of the code: we had to decide
which events we wished to implement, and which actuators would be used for
these events.

To obtain the strict code-line limit, we had to make the following adjustments:

– Omit the radar rotation command. The radar, mounted on the gun, was
instructed to turn using the gun-rotation actuator.

– Implement the fire actuator as a numerical constant which can appear at
any point within the evolved code sequence (see Table 1).

The main loop contains one line of code that directs the robot to start turn-
ing the gun (and the mounted radar) to the right. This insures that within
the first gun cycle, an enemy tank will be spotted by the radar, triggering a
ScannedRobotEvent. Within the code for this event, three additional lines of
code were added, each controlling a single actuator, and using a single nu-
merical input that was evolved using GP. The first line instructs the tank to
move to a distance specified by the first evolved argument. The second line



GP-Robocode: Using GP to Evolve Robocode Players 147

Table 1. GP Robocode system: Functions and terminals

Game-status indicators
Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y () Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY () Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the cur-

rent player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyV elocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the cur-

rent player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Numerical constants
Constant() An ERC in the range [-1, 1]
Random() Returns a random real number in the range [-1, 1]
Zero() Returns the constant 0
Arithmetic and logical functions
Add(x, y) Adds x and y

Sub(x, y) Subtracts y from x

Mul(x, y) Multiplies x by y

Div(x, y) Divides x by y, if y is nonzero; otherwise returns 0
Abs(x) Returns the absolute value of x

Neg(x) Returns the negative value of x

Sin(x) Returns the function sin(x)
Cos(x) Returns the function cos(x)
ArcSin(x) Returns the function arcsin(x)
ArcCos(x) Returns the function arccos(x)
IfGreater(x, y, exp1, exp2) If x is greater than y returns the expression exp1, other-

wise returns the expression exp2

IfPositive(x, exp1, exp2) If x is positive, returns the expression exp1, otherwise
returns the expression exp2

Fire command
Fire(x) If x is positive, executes a fire command with x being

the firepower, and returns 1; otherwise, does nothing and
returns 0

instructs the tank to turn to an azimuth specified by the second evolved ar-
gument. The third line instructs the gun (and radar) to turn to an azimuth
specified by the third evolved argument (Figure 1).

Functions and Terminals. Since terminals are actually zero-argument func-
tions, we found the difference between functions and terminals to be of little
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Robocode Player’s Code Layout

while (true)
TurnGunRight(INFINITY); //main code loop

...
OnScannedRobot() {

MoveTank(<GP#1>);
TurnTankRight(<GP#2>);
TurnGunRight(<GP#3>);

}

Fig. 1. Robocode player’s code layout

importance. Instead, we divided the terminals and functions into four groups
according to their functionality:

1. Game-status indicators: A set of terminals that provide real-time information
on the game status, such as last enemy azimuth, current tank position, and
energy levels.

2. Numerical constants: Two terminals, one providing the constant 0, the other
being an ERC (Ephemeral Random Constant), as described by Koza [2]. This
latter terminal is initialized to a random real numerical value in the range
[-1, 1], and does not change during evolution.

3. Arithmetic and logical functions: A set of zero- to four-argument functions,
as specified in Table 1.

4. Fire command: This special function is used to preserve one line of code by
not implementing the fire actuator in a dedicated line. The exact function-
ality of this function is described in Table 1.

Fitness Measure. The fitness measure should reflect the individual’s quality
according to the problem at hand. When choosing a fitness measure for our
Robocode players, we had two main considerations in mind: the opponents and
the calculation of the fitness value itself.

Selection of Opponents and Number of Battle Rounds: A good Robocode player
should be able to beat many different adversaries. Since the players in the online
league differ in behavior, it is generally unwise to assign a fitness value according
to a single-adversary match. On the other hand, it is unrealistic to do battle with
the entire player set—not only is this a time-consuming task, but new adversaries
enter the tournaments regularly. We tested several opponent set sizes, including
from one to five adversaries. Some of the tested evolutionary configurations in-
volved random selection of adversaries per individual or per generation, while
other configurations consisted of a fixed group of adversaries. The configuration
we ultimately chose to use involved a set of three adversaries—fixed throughout
the evolutionary run—with unique behavioral patterns, which we downloaded
from the top of the HaikuBot league. Since the game is nondeterministic, a total
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of three rounds were played versus each adversary to reduce the randomness
factor of the results.

Calculation of the Fitness Value: Since fitness is crucial in determining the tra-
jectory of the evolutionary process, it is essential to find a way to translate battle
results into an appropriate fitness value. Our goal was to excel in the online tour-
naments; hence, we adopted the scoring algorithms used in these leagues. The
basic scoring measure is the fractional score F , which is computed using the
score gained by the player SP and the score gained by its adversary SA:

F =
SP

SP + SA

This method reflects the player’s skills in relation to its opponent. It encour-
ages the player not only to maximize its own score, but to do so at the expense
of its adversary’s. We observed that in early stages of evolution, most players
attained a fitness of zero, because they could not gain a single point in the course
of the battle. To boost population variance at early stages, we then devised a
modified fitness measure F̃ :

F̃ =
ε + SP

ε + SP + SA
,

where ε is a fixed small real constant.
This measure is similar to the fractional-score measure, with one exception:

when two evolved players obtain no points at all (most common during the first
few generations), a higher fitness value will be assigned to the one which avoided
its adversary best (i.e., lower SA). This proved sufficient in enhancing population
diversity during the initial phase of evolution.

When facing multiple adversaries, we simply used the average modified frac-
tional score, over the battles against each adversary.

Evolutionary Parameters:

• Population size: 256 individuals. Though some GP researchers, such as Koza,
use much larger populations (up 10,000,000 individuals [1]), we had limited
computational resources. Through experimentation we arrived at 256.

• Termination criterion and generation count: We did not set a limit for the
generation count in our evolutionary runs. Instead, we simply stopped the
run manually when the fitness value stopped improving for several genera-
tions.

• Creation of initial population: We used Koza’s ramped-half-and-half method
[2], in which a number d, between mindepth (set to 4) and maxdepth (set
to 6) is chosen randomly for each individual. The genome trees of half of the
individuals are then grown using the Grow method, which generates trees
of any depth between 1 and d, and the other half is grown using the Full
method, which generates trees of depth d exactly. All trees are generated
randomly, by selection of appropriate functions and terminals in accordance
with the growth method.
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• Breeding operators: Creating a new generation from the current one involves
the application of “genetic” operators (namely, crossover and mutation) on
the individuals of the extant generation. We used two such operators:

– Mutation (unary): randomly selects one tree node (with probability 0.9)
or leaf (with probability 0.1), deletes the subtree rooted at that node
and grows a new subtree instead, using the Grow method. Bloat control
is achieved by setting a maxdepth parameter (set to 10), and invoking
the growth method with this limit.

– Crossover (binary): randomly selects a node (with probability 0.9) or
a leaf (with probability 0.1) from each tree, and switches the subtrees
rooted at these nodes. Bloat control is achieved using Langdon’s method
[7], which ensures that the resulting trees do not exceed the maxdepth
parameter (set to 10).

The breeding process starts with a random selection of genetic operator: a
probability of 0.95 of selecting the crossover operator, and 0.05 of select-
ing the mutation operator. Then, a selection of individuals is performed (as
described in the next paragraph): one individual for mutation, or two for
crossover. The resulting individuals are then passed on to the next genera-
tion.

• Selection method: We used tournament selection, in which a group of in-
dividuals of size k (set to 5) is randomly chosen. The individual with the
highest fitness value is then selected.
In addition, we added elitism to the breeding mechanism: The two highest-
fitness individuals were passed to the next generation with no modifications.

• Extraction of best individual: When an evolutionary run ends, we should
determine which of the evolved individuals can be considered the best. Since
the game is highly nondeterministic, the fitness measure does not explicitly
reflect the quality of the individual: a “lucky” individual might attain a
higher fitness value than better overall individuals. In order to obtain a more
accurate measure for the players evolved in the last generation, we let each
of them do battle for 100 rounds against 12 different adversaries (one at a
time). The results were used to extract the optimal player—to be submitted
to the league.

On Execution Time and the Environment. Genetic programming is known
to be time consuming, mainly due to fitness calculation. We can estimate the
time required for one run using this simple equation:

ExceutionT ime = RoundT ime × NumRounds ×
NumAdversaries × PopulationSize × NumGenerations

A typical run involved 256 individuals, each battle carried out for 3 rounds
against 3 different adversaries. A single round lasted about one second, and our
best evolutionary run took approximately 400 generations, so the resulting total
run time was:

ExecutionT ime = 1 × 3 × 3 × 256 × 400 ≈ 9.2 × 105
seconds = 256 hours,
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or about 10 days. In order to overcome the computational obstacle, we dis-
tributed the fitness calculation process over up to 20 computers. Needless to say,
with additional computational resources run time can be yet further improved
upon.

We used Luke’s ECJ11 system, a Java-based evolutionary computation and
genetic programming research system (cs.gmu.edu/∼eclab/projects/ecj/).

5 Results

We performed multiple evolutionary runs against three leading opponents, as
described in Section 4. The progression of the best run is shown in Figure 2.

Due to the nondeterministic nature of the Robocode game, and the relatively
small number of rounds played by each individual, the average fitness is worthy
of attention, in addition to the best fitness. The first observation to be made is
that the average fractional score converged to a value equaling 0.5, meaning that
the average Robocode player was able to hold its own against its adversaries.
When examining the average fitness, one should consider the variance: A player
might defeat one opponent with relatively high score, while losing to the two
others.

Though an average fitness of 0.5 might not seem impressive, two comments
are in order:
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Fig. 2. Modified fractional score (Section 4) averaged over three different adversaries,
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Fig. 3. Best GPBot takes third place at HaikuBot league on October 9, 2004
(robocode.yajags.com/20041009/haiku-1v1.html). The table’s columns reflect vari-
ous aspects of robotic behavior, such as survival and bullet damage measures. The final
rank is determined by the rating measure, which reflects the performance of the robot
in combat with randomly chosen adversaries

– This value reflects the average fitness of the population; some individuals
attain much higher fitness.

– The adversaries used for fitness evaluation were excellent ones, taken from
the top of the HaikuBot league. In the “real world,” our evolved players
faced a greater number of adversaries, most of them inferior to those used
in the evolutionary process.

To join the HaikuBot challenge, we extracted what we deemed to be the best
individual of all runs. Its first attempt at the HaikuBot league resulted in third
place out of 27 contestants (Figure 3).

6 Concluding Remarks and Future Work

As noted in Section 1, Koza et al. [1] delineated eight criteria for an automatically
created result to be considered human-competitive, the one of interest to us
herein being:
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H. The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written com-
puter programs).

Currently, all players in the HaikuBot league but GPBot are human-written
computer programs. We believe that our attaining third place fulfills the eighth
criterion: GPBots are human competitive.

In addition, the complexity of the problem should be taken under consider-
ation: The game of Robocode, being nondeterministic, continuous, and highly
diverse (due to the unique nature of each contestant), induces a virtually infinite
search space, making it an extremely complex (and thus interesting) challenge
for the GPer.

Generalization. When performing an evolutionary run against a single ad-
versary, winning strategies were always evolved. However, these strategies were
specialized for the given adversary: When playing against other opponents (even
relatively inferior ones), the evolved players were usually beaten. Trying to avoid
this obstacle, our evolutionary runs included multiple adversaries, resulting in
better generalization, as evidenced by our league results (where our players en-
countered previously unseen opponents). Nevertheless, there is still room for
improvement where generalization is concerned. A simple (yet highly effective,
in our experience) enhancement booster would be the increase of computational
resources, allowing more adversaries to enter into the fitness function.

Coevolution. One of the evolutionary methods that was evaluated and aban-
doned is coevolution. In this method, the individuals in the population are eval-
uated against each other, and not by referring to an external opponent. Coevo-
lution has a prima facie better chance of attaining superior generalization, due
to the diversity of opponents encountered during evolution. However, we found
that the evolved players presented primitive behavior, and were easily defeated
by human-written programs. Eisenstein [3] described the same phenomenon,
and has suggested that the problem lies with the initial generation: The best
strategies that appear early on in evolution involve idleness—i.e., no moving nor
firing—since these two actions are more likely to cause loss of energy. Breeding
such players usually results in losing the genes responsible for movement and
firing, hence the poor performance of the latter generations. We believe that
coevolution can be fruitful if carefully planned, using a two-phase evolutionary
process. During the first stage, the initial population will be evolved using one
or more human-written adversaries as fitness measure; this phase will last a rel-
atively short period of time, until basic behavioral patterns emerge. The second
stage will involve coevolution over the population of individuals that was evolved
in the first stage. This two-phase approach we leave for future work.

Exploring Other Robocode Divisions. There are a number of other divi-
sions apart from HaikuBot in which GP-evolved players might compete in the
future. Among these is the MegaBot challenge, in which no code-size restrictions
hold. Some players in this category employ a unique strategy for each adversary,
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using a predefined database. Since GP-evolved players are good at specializing,
we might try to defeat some of the league’s leading players, ultimately creating
an overall top player by piecing together a collection of evolved strategies.

Other Robocode battle divisions are yet to be explored: melee games—in
which a player faces multiple adversaries simultaneously, and team games—in
which a player is composed of several robots that act as a team.

Acknowledgements

We thank Jacob Eisenstein for helpful discussions and for the genuine interest
he took in our project.

References

1. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, Norwell, MA (2003)

2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge, Massachusetts (1992)

3. Eisenstein, J.: Evolving robocode tank fighters. Technical Report
AIM-2003-023, AI Lab, Massachusetts Institute Of Technology (2003)
citeseer.ist.psu.edu/647963.html.

4. Koza, J.R.: Evolution of subsumption using genetic programming. In Varela, F.J.,
Bourgine, P., eds.: Proceedings of the First European Conference on Artificial Life.
Towards a Practice of Autonomous Systems, Paris, France, MIT Press (1992) 110–
119

5. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3
(1995) 199–230

6. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts (1994)

7. Langdon, W.B.: Size fair and homologous tree genetic programming crossovers.
Genetic Programming and Evolvable Machines 1 (2000) 95–119



 

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 155 – 166, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Incorporating Learning Probabilistic Context-Sensitive 
Grammar in Genetic Programming for Efficient 

Evolution and Adaptation of Snakebot  

Ivan Tanev 

Department of Information Systems Design, Doshisha University,  
1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0321, Japan 

ATR Network Informatics Laboratories, 
2-2-2 Hikaridai, “Keihanna Science City”, Kyoto 619-0288, Japan 

itanev@mail.doshisha.ac.jp 
http://isd-si.doshisha.ac.jp/itanev/ 

Abstract. In this work we propose an approach of incorporating learning prob-
abilistic context-sensitive grammar (LPCSG) in genetic programming (GP) em-
ployed for evolution and adaptation of locomotion gaits of simulated snake-like 
robot (Snakebot). In our approach LPCSG is derived from the originally de-
fined context-free grammar, which usually expresses the syntax of genetic pro-
grams in canonical GP. During the especially introduced steered mutation the 
probabilities of applying each of particular production rules with multiple right-
hand side alternatives in LPCSG depend on the context, and these probabilities 
are learned from the aggregated reward values obtained from the evolved best-
of-generation Snakebots. Empirically obtained results verify that employing 
LPCSG contributes to the improvement of computational effort of both (i) the 
evolution of the fastest possible locomotion gaits for various fitness conditions 
and (ii) adaptation of these locomotion gaits to challenging environment and 
degraded mechanical abilities of Snakebot. In all of the cases considered in this 
study, the locomotion gaits, evolved and adapted employing GP with LPCSG 
feature higher velocity and are obtained faster than with canonical GP.   

Keywords: Snakebot, adaptation, locomotion, genetic programming, grammar. 

1   Introduction 

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness charac-
teristics beyond the capabilities of most wheeled and legged vehicles – ability to trav-
erse terrain that would pose problems for traditional wheeled or legged robots, and 
insignificant performance degradation when partial damage is inflicted. Some useful 
features of Snakebots include smaller size of the cross-sectional areas, stability, ability 
to operate in difficult terrain, good traction, high redundancy, and complete sealing of 
the internal mechanisms [3, 4]. Robots with these properties open up several critical 
applications in exploration, reconnaissance, medicine and inspection. However, com-
pared to the wheeled and legged vehicles, Snakebots feature (i) more difficult control of 
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locomotion gaits and (ii) inferior speed characteristics. In this work we intend to address 
the following challenge: how to develop control sequences of Snakebot’s actuators, 
which allow for achieving the fastest possible speed of locomotion.  

For many tasks and robot morphologies, it might be seen as a natural approach to 
handcraft the locomotion control code by applying various theoretical approaches [12, 
14].  However, handcrafting might not be feasible for developing the control code of 
real Snakebot due to its morphological complexity and the need of prompt adaptation 
under degraded mechanical abilities and/or unanticipated environmental condi-
tions.  The automated mechanisms for prompt generation of near-optimal solutions to 
complex, ill-posed problems are usually based on various models of learning or evolu-
tion of species in the Nature [5, 7, 13]. The proposed approach of employing genetic 
programming (GP) implies that the code, which controls the locomotion of Snakebot is 
automatically designed by a computer system via simulated evolution through selection 
and survival of the fittest in a way similar to the natural evolution of species [6].   

The objectives of our work are (i) to explore the feasibility of applying GP for 
automatic design of the fastest possible locomotion of realistically simulated Snake-
bot and (ii) to investigate the adaptation of such locomotion to challenging environ-
ment and degraded abilities (due to partial damage) of simulated Snakebot. We are 
especially interested in the implications of incorporating a learning probabilistic con-
text-sensitive grammar (LPCSG) in GP on the efficiency of evolution and adaptation 
of Snakebot. Presented approach of employing LPCSG is related to the approach of 
grammatical evolution [8] and to the use of probability distribution algorithms in 
evolutionary computations, mostly – in genetic algorithms [9, 10]. In neither of these 
methods however the incorporation of LPCSG in GP has been explored and our inter-
est in the feasibility of such approach additionally motivated us in this work.  

The remainder of this document is organized as follows. Section 2 emphasizes the 
main features of GP proposed for evolution of locomotion of Snakebot. Section 3 
introduces the proposed approach of incorporating LPCSG in GP and discusses the 
empirically obtained results of efficiency of evolution and adaptation of Snakebot to 
challenging environment and partial damage. Section 4 draws a conclusion.  

2   GP for Automatic Design of Locomotion Gaits of Snakebot 

2.1   Representation of Snakebot  

Snakebot is simulated as a set of identical spherical morphological segments (“verte-
brae”), linked together via universal joints. All joints feature identical (finite) angle 
limits and each joint has two attached actuators (“muscles”). In the initial, standstill 
position of Snakebot the rotation axes of the actuators are oriented vertically (vertical 
actuator) and horizontally (horizontal actuator) and perform rotation of the joint in the 
horizontal and vertical planes respectively (Figure 1). Considering the representation 
of Snakebot, the task of designing the fastest locomotion can be rephrased as develop-
ing temporal patterns of desired turning angles of horizontal and vertical actuators of 
each segment, that result in fastest overall locomotion of Snakebot. The proposed 
representation of Snakebot as a homogeneous system comprising identical morpho-
logical segments is intended to significantly reduce the size of the search space of the 
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GP. Moreover, because the size of the search space does not necessarily increase with 
the increase of the complexity of Snakebot (i.e. the number of morphological seg-
ment), the proposed approach allows achievement of favorable scalability characteris-
tics of GP.  

 
 

 
 
 

Fig. 1. Morphological segments of Snakebot linked via universal joint. Horizontal and vertical 
actuators attached to the joint perform rotation of the segment #i+1 in vertical and horizontal 
planes respectively 

2.2   Algorithmic Paradigm 

GP. GP [6] is a domain-independent problem-solving approach in which a population 
of computer programs (individuals’ genotypes) is evolved to solve problems. The 
simulated evolution in GP is based on the Darwinian principle of reproduction and 
survival of the fittest. The fitness of each individual is based on the quality with 
which the phenotype of the simulated individual is performing in a given environ-
ment. 

Function Set and Terminal Set. In applying GP to evolution of Snakebot, the geno-
type is associated with two algebraic expressions, which represent the temporal pat-
terns of desired turning angles of both the horizontal and vertical actuators of each 
morphological segment. Because locomotion gaits, by definition, are periodical, we 
include the functions sin and cos in the GP function set in addition to the basic alge-
braic functions. Terminal symbols include the variables time, index of the segment 
of Snakebot, and two constants: Pi, and random constant within the range [0, 2]. 
The main parameters of the GP are summarized in Table 1.  

Context-Free Grammar for Canonical GP. The context-free grammar (CFG) G, 
usually employed to define the allowed syntax of individuals in GP consists of  (N, ,, 
P, S) where N is a finite set of nonterminal symbols,  is a finite set of terminal 
symbols that is disjoint from N, S is a symbol in N that is indicated as the start 
symbol, and P is a set of production rules, where a rule is of the form 

V -> w 

where V is a non-terminal symbol and w is a string consisting of terminals and/or 
non-terminals. The term "context-free" comes from the feature that the variable V can 
always be replaced by w, in no matter what context it occurs. The set of non-terminal 
symbols of G of GP, is employed to develop the temporal patterns of desired turning 
angles of horizontal and vertical actuators of segments, that result in fastest overall 
locomotion of Snakebot, is defined as follows:  

N = {GP, STM, STM1, STM2, VAR, CONST_x10, CONST_PI, OP1, OP2} 

 Horizontal plane 

Vertical plane 
Segment  #i Segment  #i+1

Universal jointVertical axis 

Horizontal axis 
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cos)nop) algebraic statement, STM2 – a generic binary (dyadic, e.g. +, -, *, and /) 
algebraic statement, VAR – a variable, OP1 – an unary operation, OP2 – a binary 
(dyadic) operation, CONST_x10 is a random constant within the range [0..20], and 
CONST_PI equals either 3.1416 or 1.5708. The set of terminal symbols is de-
fined as: 

 = {sin, cos, nop, +, -, *, /, time, segment_id} 

where sin, cos, nop, +, -, * and / are terminals which specify the 
functions in the generic algebraic statements. The start symbol is GP, and the set of 
production rules expressed in Backus-Naur form (BNF) is as shown in Figure 2.  

Table 1. Main parameters of GP 

Category Value 

Function set {sin, cos, nop, +, -, *, /} 
Terminal set {time, segment_ID, Pi, random constant} 
Population size 200 individuals 
Selection  Binary tournament, selection ratio 0.1, reproduction ratio 0.9 
Elitism Best 4 individuals 
Mutation Random subtree mutation, ratio 0.01 
Fitness Velocity of simulated Snakebot during the trial 
Trial interval 180 time steps, each time step account for 50ms of “real” time  

Termination criterion 
(Fitness >100) or (Generations>40) 
 or (no improvement of fitness for 16 generations) 

 
(1)        GP ——  STM 
(2.1-2.5)  STM ——  STM1|STM2|VAR|CONST_x10|CONST_PI 
(3)         STM1 ——  OP1 STM  
(4.1-4.6)    OP1 ——  sin|cos|nop|–|sqr|sqrt 
(5)         STM2 ——  OP2 STM STM 
(6.1-6.4)    OP2 ——  +|-|*|/ 
(7.1-7.2)   VAR  ——  time|segment_id  
(8)         CONST_x10 ——  0..20 
(9.1-9.2)   CONST_PI  ——  3.1416|1.5708 

Fig. 2. BNF of production rules of the context free grammar G of GP, employed for automatic 
design of locomotion gaits of Snakebot. The following abbreviations are used: STM – generic 
algebraic statement, STM1 – unary algebraic statement, STM2 – binary (dyadic) algebraic 
statement, VAR – variable, OP1 – unary operation, and OP2 – binary operation 

 
GP uses the defined production rules of G to create the initial population and to 

mutate genetic programs. Production rules with multiple alternative right-hand sides 
(such as rules 2, 4, 6, 7 and 9) are usually chosen randomly in these operations. 

Fitness Evaluation. The fitness function is based on the velocity of Snakebot, esti-
mated from the distance, which the center of the mass of Snakebot travels during the 
trial. Fitness of 100 (the one of termination criteria shown in Table 1) is equivalent to 
a velocity, which displaced Snakebot a distance equal to twice its length.  

 

where STM is a generic algebraic statement, STM1 – a generic unary (e.g., sin, 
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Representation of Genotype. Inspired by its flexibility, and the recently emerged 
widespread adoption of document object model (DOM) and extensible markup lan-
guage (XML), we represent evolved genotypes of simulated Snakebot as DOM-parse 
trees featuring equivalent flat XML-text. Both (i) the calculation of the desired turn-
ing angles during fitness evaluation and (ii) the genetic operations are performed on 
DOM-parse trees using API of off-the shelf DOM-parser. 

Genetic Operations.  Selection is a binary tournament. Crossover is defined in a 
strongly typed way in that only the DOM-nodes (and corresponding DOM-subtrees) 
of the same data type (i.e. labeled with the same tag) from parents can be swapped. 
The sub-tree mutation is allowed in strongly typed way in that a random node in ge-
netic program is replaced by syntactically correct sub-tree. The mutation routine re-
fers to the data type of currently altered node and applies randomly chosen rule from 
the set of applicable rewriting rules as defined in the grammar of GP.  

ODE. We have chosen Open Dynamics Engine (ODE) [12] to provide a realistic 
simulation of physics in applying forces to phenotypic segments of Snakebot.  ODE is 
a free, industrial quality software library for simulating articulated rigid body dynam-
ics. It is fast, flexible and robust, and it has built-in collision detection.  

3   Incorporating Learning Context-Sensitive Grammar in GP 

3.1   Learning Probabilistic Context-Sensitive Grammar of Strongly-Typed GP 

In the proposed approach, the learning probabilistic context-sensitive grammar 
(LPCSG) G* is introduced as a set of the same attributes (N*, *, P*, S*) as CSG  G 
defined in Section 2.2. The attributes N*, *, and S* are identical to the corresponding 
attributes N, , and S of G. The set of production rules P* of G* are derived from P of 
G as follows: (i) Production rules of PS (PS ⊂ P) of G which have a single right-hand 
side are defined in the same way in P* as in P, while (ii) the production rules in PM 
(PM ⊂ P) of G, which feature multiple right-hand side alternatives V  

w1|w2|...|wN are re-defined for each instance i of the context as follows: 

contexti V  contexti w1 (p
i
1) 

contexti V  contexti w2 (p
i
2) 

... 
contexti V  contexti wN (p

i
N) 

where pi1, pi2,  …piN ( pin = 1,  n=1,2..N.) are the probabilities of applying 
each alternative rule with the left-hand side non-terminal V for the given contexti.   

The proposed approach is based on the idea of introducing bias in applying the 
most preferable rule from rules with multiple, alternative right-hand sides. We assume 
that the preferences of applying certain production rules depend on the surrounding 
grammatical context, defining which rules have been applied before. The initial prob-
ability distributions (PD) pi1, pi2,  …piN for each contexti  is even and then learned 
(adjusted) incrementally at each generation from the best performing Snakebots. The 
learned PD is then used as a bias to steer the mutation of Snakebots. A sample of 



160 I. Tanev 

 

biased application of production rules of G* according to the learned PD for the con-
sidered context is shown in Figure 3. 

 

 
 
 
 

 
 
3.2   Algorithm of GP Incorporating LPCSG 

 
The principal steps of algorithm of GP incorporating LPCSG are shown in Figure 4. 
As figure illustrates, additional Steps 6 and 9 are introduced in the canonical algo-
rithm of GP. The PD is updated on Step 6, and the new offsprings, created applying 
the proposed “steered” mutation via PD on Step 9 are inserted into already repro-
duced via canonical crossover (Step 7) and mutation (Step 8), growing new popu-
lation of Snakebots. The ratio KPD of number of offsprings #NPD created via “steered” 
mutation using PD and the number of offsprings #NCO created via canonical crossover 
is kept within the range [0, 5]. KPD is dynamically tuned on Step 6 based on the 
stagnation counter CS, which maintains the number of most recent generations without 
improvement of the fitness. KPD is defined according to the following rule: 

  KPD = 5 - smaller_of(5,CS) 

Lower values of KPD in stagnated population (i.e., for CS>0) favor the reproduction 
via canonical random genetic operations over the reproduction using steered mutation 
via PD. As we empirically investigated, low KPD facilitates avoiding premature con-
vergence of population by increasing the diversity of population and concequently, 
accelerating the escape from the (most likely) local optimal solutions, discovered by 
the steering bias of the current PD. Conversely, replacing the usually random genetic 
operations of canonical GP with the proposed steered mutation when KPD is close to its 
maximum value (i.e., for CS=0) can be viewed as a mechanism for growing and pre-
serving the proven to be beneficial building blocks in evolved solutions rather than 
destroying them by usually random crossover and mutation.  

Fig. 3. Sample of biased application of production rules of G*: the current leftmost non-
terminal, as shown in (a) is STM, which requires applying one of the production rules 2.1-2.5 
(refer to Figure 2). For the considered context (a), the “learned” preferences (b) of applying 
rules 2.1-2.5 indicate highest probability of production rule 2.4. Consequently, the rule 2.4 
will be most likely applied producing the genetic program as shown in (c) 
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Obtaining and applying PD during the steered mutation (Figure 4, Step 9) implies 
maintaining a PD table. Each entry in the table stores the context, the left-hand side 
non-terminal, the list of right-hand side symbols, the aggregated reward values and 
the calculated probability of applying the given production rule for the given context. 
A new entry is added or the aggregated reward value of existing entry is updated by 
extracting the syntactic features of the genetic programs comprising the mating pool 
of current generation.  

 
Step 0: Creating Initial Population and Clearing PDD; 
Step 1: While (true) do begin 
Step 2:   Evaluating Population; 
Step 3:   Ranking Population; 
Step 4:   if TerminationCriteria then Go to Step 9 
Step 5:   Selecting the Mating Pool; 
Step 6:   Updating PDD and KPD; 
Step 7:   Creating #NCO offsprings via canonical crossover; 
Step 8:   Mutating current population via canonical mutation; 
Step 9:   Creating #NPD offsprings via mutation of mating pool using PD; 
Step10: end; 

Fig. 4. Algorithm of GP incorporating LPCSG. Steps 6 and 9 are specific for the proposed 
approach. Steps 0, 2-5, 7 and 8 are common principal steps of canonical GP 

3.3   Empirical Results 
 

This section discusses empirically obtained results verifying the effects of incorporat-
ing LPCSG on the efficiency of GP applied for the following two tasks: (i) evolution 
of the fastest possible locomotion gaits of Snakebot for various fitness conditions and 
(ii) adaptation of these locomotion gaits to challenging environment and degraded 
mechanical abilities of Snakebot. These tasks, considered as relevant for successful 
accomplishment of anticipated exploration, reconnaissance, medicine or inspection 
missions, feature different fitness landscapes. Therefore, the experiments discussed in 
this section are intended to verify the versatility and the scope of applicability of the 
proposed approach.   

In all of the cases considered, the fitness of Snakebot reflects the low-level objec-
tive (i.e. what is required to be achieved) of Snakebot in these missions, namely, to be 
able to move fast regardless of environmental challenges or degraded abilities. The 
experiments discussed illustrate the ability of the evolving Snakebot to learn how (e.g. 
by discovering beneficial locomotion traits) to accomplish the required objective 
without being explicitly taught about the means to do so. Such know-how acquired by 
Snakebot automatically and autonomously can be viewed as a demonstration of emer-
gent intelligence [1], in that the task-specific knowledge of how to accomplish the 
task emerges in the Snakebot from the interaction of the problem solver and the fit-
ness function. 

Evolution of Fastest Locomotion Gaits. Figure 6 shows the results of evolution of 
locomotion gaits for cases where fitness is measured as velocity in any direction.  
Despite the fact that fitness is unconstrained and measured as velocity in any direc-
tion, sidewinding locomotion (defined as locomotion predominantly perpendicular to 
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the long axis of Snakebot) emerged in all 10 independent runs of GP, suggesting that 
it provides superior speed characteristics for considered morphology of Snakebot. As 
Figure 6c illustrates, incorporating LPCSG in GP is associated with computational 
effort (required to achieve probability of success 0.9) of about 20 generations, which 
is about 1.6 times faster that canonical GP with CFG. Sample snapshots of evolved 
best-of-run sidewinding locomotion gaits are shown in Figures 6d and 6e.  

 

 

 

 

 

 

 

 

 

In order to verify the superiority of velocity characteristics of sidewinding we 
compared the fitness convergence characteristics of evolution in unconstrained 
environment for the following two cases: (i) unconstrained fitness measured as 
velocity in any direction (as discussed above and illustrated in Figure 6), and (ii) 
fitness, measured as velocity in forward direction only. The results of evolution of 
forward (rectilinear) locomotion, shown in Figure 7 indicate that non-sidewinding 
motion, compared to sidewinding, features much inferior velocity characteristics. The 
results also demonstrate that GP with LPCSG in average converges almost 4 times 
faster and to higher values than canonical GP. Snapshots taken during the motion of a 
sample evolved best-of-run sidewinding Snakebot are shown in Figures 7c and 7d.  

 
 
 
 
 
 
 
 
 
 
 
 
 

The results of evolution of rectilinear locomotion of simulated Snakebot confined 
in narrow “tunnel” are shown in Figure 8. As the fitness convergence characteristics 
of 10 independent runs (Figure 8a and Figure 8b) illustrate, GP with LPCSG is almost 
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Fig. 6. Evolution of locomotion gaits for cases where fitness is measured as velocity in any 
direction: fitness convergence characteristics of 10 independent runs of GP with LPCSG (a), 
canonical GP with CFG (b), probability of success (c), and snapshots of sample evolved via GP 
with LPCSG best-of-run sidewinding Snakebots (d and e). The dark trailing circles in (d) and 
(e) depict the trajectory of the center of the mass of Snakebot

Fig. 7 . Evolution of locomotion gaits for cases where fitness  is measured as velocity in 
forward direction only.   Fitness  convergence  characteristics  of 10  independent runs of STGP 
with LPCSG (a),  canonical STGP with CFG (b), and snapshots  of  sample  evolved via STGP 
with LPCSG best-of-run forward locomotion (c and d) 
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twice faster than canonical GP. Compared to forward locomotion in unconstrained 
environment (Figure 7), the velocity in this experiment is superior, and even compa-
rable to the velocity of sidewinding (Figure 6). This, seemingly anomalous phenome-
non demonstrates an emergent intelligence – i.e. the ability of evolution to discover a 
way to utilize the walls of “tunnel” as (i) a source of extra grip and as (ii) an addi-
tional mechanical support for fast yet unbalanced locomotion gaits (e.g., vertical un-
dulation) in an eventual unconstrained environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Adaptation of Sidewinding to  Challenging Environment and Degraded Mecha- 
nical Abilities of Snakebot. Adaptation in Nature is viewed as an ability of species to 
discover the best phenotypic (i.e. pertaining to biochemistry, morphology, physiol-
ogy, and behavior) traits for survival in continuously changing fitness landscape. The 
adaptive phenotypic traits are result of beneficial genetic changes occurred during the 
course of evolution (phylogenesis) and/or phenotypic plasticity (ontogenesis – learn-
ing, polymorphism, polyphenism, immune response, adaptive metabolism, etc.) oc-
curring during the lifetime of the individuals. In our approach we employ GP with 
LPCSG for adaptation of Snakebot to changes in the fitness landscape caused by (i) 
challenging environment and (ii) partial damage to 1, 2, 4 and 8 (out of 15) morpho-
logical segments. In all of the cases of adaptation, GP is initialized with a population 
comprising 20 best-of-run genetic programs, obtained from 10 independent runs of 
evolution of Snakebot in unconstrained environment, plus additional 180 randomly 
created individuals.  

The challenging environment is modeled by the introduction of immobile obstacles 
comprising 40 small, randomly scattered boxes, a wall with height equal to the 0.5 
diameters of the cross-section of Snakebot, and a flight of 3 stairs, each with height 
equal to the 0.33 diameters of the cross-section of Snakebot. The results of adaptation 
of Snakebot, shown in Figure 9 demonstrate that the computational effort (required to 
reach fitness values of 100 with probability of success 0.9) of GP with LPCSG is 
about 20 generations. Conversely, only half of all runs of GP with CFG achieve the 
targeted fitness value, implying that the corresponding probability of success con-
verges to the value of 0.5. Snapshots illustrating the performance of Snakebot initially 
evolved in unconstrained environment, before and after the adaptation (via GP with 
LPCSG) to challenging environment are shown in Figure 10. The additional elevation 
of the body, required to faster negotiate the obstacles represents the emergent know-
how in the adapting Snakebot. As Figure 11 illustrates, the trajectory of the central 
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Fig. 8. Evolution of locomotion gaits of Snakebot is confined in narrow “tunnel”: fitness 
convergence characteristics of 10 independent runs of STGP with LPCSG (a), canonical 
STGP with CFG (b), and snapshots of sample evolved best-of-run gaits at the intermediate (c) 
and final stages of the trial (d) 
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segment around the center of the mass of sample adapted Snakebot (Figure 11b) is 
twice higher than before the adaptation (Figure 11a).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The adaptation of sidewinding Snakebot to partial damage to 1, 2, 4 and 8 (out of 
15) segments by gradually improving its velocity is shown in Figure 12. Demon-
strated results are averaged over 10 independent runs for each case of partial damage 
to 1,  2,  4 and  8 segments.  The  damaged  segments are evenly  distributed along the  

a) 

Fig. 10. Snapshots illustrating the sidewinding Snakebot, initially evolved in unconstrained 
environment, before the adaptation – initial (a), intermediate (b and c) and final stages of the 
trial (d), and after the adaptation to challenging environment via STGP with LPCSG - initial 
(e), intermediate (f) and final stages of the trial (g) 
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Fig. 9. Adaptation of sidewinding locomotion to challenging environment: fitness convergence 
characteristics of 10 independent runs of STGP with LPCSG (a), canonical STGP with CFG 
(b), and probability of success (c) 
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Fig. 11. Trajectory of the central segment (cs) around the center of mass (cm) of Snakebot for 
sample best-of-run sidewinding locomotion before (a) and after the adaptation (b) to challeng-
ing environment 
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body of Snakebot. Damage inflicted to a particular segment implies a complete loss of 
functionality of both horizontal and vertical actuators of the corresponding joint.  

 
 
 
 
 
 
 
 
 
As Figure 12 depicts, Snakebot completely recovers from damage to single seg-

ment attaining its previous velocity in 25 generations with “canonical” GP employing 
CFG, and only in 7 generations with GP with LPCSG, resulting in a mean real-time of 
adaptation of a few hours of runtime on PC featuring Intel® 3GHz Pentium® 4 mi-
croprocessor and 2GB RAM under Microsoft Windows NT OS.  Snakebots recovers 
to average of 94% (CFG) and 100% (LPCSG) of its previous velocity in the case 
where 2 segments are damaged. With 4 and 8 damaged segments the degree of recov-
ery is 77% (CFG)  and 92% (LPCSG), and 68% (CFG) and 72% (LPCSG) respec-
tively. In all of the cases considered incorporating LPCSG contributes to faster adap-
tation of Snakebot, and in all cases the Snakebot recovers to higher values of velocity 
of locomotion. 

4   Conclusion 

In this work we propose an approach of incorporating LPCSG in GP employed for 
evolution and adaptation of locomotion gaits of simulated Snakebot. We introduced a 
“steered” mutation in which the probabilities of applying each of particular produc-
tion rules with multiple right-hand side alternatives in LPCSG depend on the context, 
and these probabilities are “learned” from the aggregated reward values obtained from 
the evolved best-of-generation Snakebots. Empirically obtained results verify that 
employing LPCSG contributes to the improvement of computational effort of both (i) 
the evolution of the fastest possible locomotion gaits for various fitness conditions 
and (ii) adaptation of these locomotion gaits to challenging environment and degraded 
mechanical abilities of Snakebot.  
    Recent discoveries in molecular biology and genetics suggest that mutations do not 
happen randomly in the Nature. Instead, some fragments of DNA tend to repel the 
mutations away, while other fragments seem to attract it [2]. It is assumed that the 
former fragments are related to the very basics of life, and therefore, any mutation 
within them can be potentially fatal to the species. Biasing the mutation operation 
towards the proven to be beneficial genotypic structures in the proposed approach of 
steering of mutation via GP with LPCSG can be viewed as an attempt (i) to mimic the 
Natural mechanisms of genomic control over the mutation operations and (ii) to in-
vestigate the computational implication of these mechanisms on efficiency of simu-
lated evolution and adaptation of engineering artifacts.  
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Abstract. Genetic Parallel Programming (GPP) is a novel Genetic Program-
ming paradigm.  GPP Logic Circuit Synthesizer (GPPLCS) is a combinational 
logic circuit learning system based on GPP.  The GPPLCS comprises a Multi-
Logic-Unit Processor (MLP) which is a hardware processor built on a Field 
Programmable Gate Array (FPGA).  The MLP is designed to speed up the 
evaluation of genetic parallel programs that represent combinational logic cir-
cuits.  Four combinational logic circuit problems are presented to show the per-
formance of the hardware-assisted GPPLCS.  Experimental results show that 
the hardware MLP speeds up evolutions over 10 times.  For difficult problems 
such as the 6-bit priority selector and the 6-bit comparator, the speedup ratio 
can be up to 22. 

1 Introduction 

Genetic Programming (GP) [1] is a robust method in Evolutionary Computation.  
There are two main streams in GP, standard GP [2] and linear-structured GP (linear 
GP) [3].  In standard GP, a genetic program is represented in a tree structure.  In linear 
GP, a genetic program is represented in a linear list of machine code instructions or 
high-level language statements.  A linear genetic program can be run on a target ma-
chine directly without performing any translation process.  The Genetic Parallel Pro-
gramming (GPP) [4] paradigm is developed on the basis of linear GP.  In GPP, a 
genetic parallel program consists of a sequence of parallel-instructions.  A parallel-
instruction comprises multiple sub-instructions that can perform multiple operations 
simultaneously in an execution step.  Cheang et al. [5] have demonstrated that GPP 
can be used to evolve combinational logic circuits with 2-input logic units. 

In the last decade, advances in Field Programmable Gate Array (FPGA) [6] have 
made efficient Evolvable Hardware (EHW) [7] possible.  EHW uses Evolutionary 
Algorithms to evolve hardware architecture extrinsically or intrinsically.  One of the 
major usages of EHW is to design combinational logic circuits [8,9,10].  Moreover, 
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FPGA has been adopted to speed up Genetic Algorithms (GAs) and GP systems 
[11,12,13,14].  The basic idea is to put the whole or a part of a GA or GP system in 
hardware so as to solve problems in a shorter time than a pure software system. 

In this paper, we propose a hardware-assisted combinational logic circuit learning 
system, GPP Logic Circuit Synthesizer (GPPLCS).  The GPPLCS consists of a soft-
ware Evolution Engine (EE) and an FPGA-based logic circuit evaluation engine, a 
Multi-Logic-Unit Processor (MLP) (see Fig. 1).  Combinational logic circuits are 
represented in genetic parallel programs which can be run on the MLP. 

GENETIC OPERATIONS:-

training

mutation, crossover, 
selection, etc...

truth table

MLP program

Multi-Logic-Unit Processor (MLP)Evolution Engine (EE)

individuals

evaluate
fitness

population

cases

registers

decompile

MLP program in parallel assembly

outputs

genotype

evaluated
expected output

4-LUT

4-LUT

 

Fig. 1. The system block diagram of the GPPLCS 

The main purpose of this paper is to show the performance of the GPPLCS with 
the hardware MLP.  We performed experiments on four combinational logic circuit 
problems (i.e. a 6-bit multiplexer, a 2-bit full-adder, a 3-bit comparator and a 6-bit 
priority selector).  Experimental results show that the hardware MLP speeds up the 
evolution by at least 10 times even for the easier problems which are less computa-
tionally intensive. 

The rest of the paper is organized as follows: Section 2 contains descriptions of the 
GPPLCS; Section 3 presents the implementation details of the hardware MLP; Sec-
tion 4 describes details of experiments and experimental settings; Section 5 presents 
results; and finally, Section 6 concludes our work. 

2 Genetic Parallel Programming Logic Circuit Synthesizer  

Genetic Parallel Programming (GPP) is a linear GP paradigm that evolves parallel 
programs based on a Multi-ALU Processor (MAP).  GPP has been used to evolve 
compact parallel programs for different problems, such as numeric function regres-
sion [4] and data classification problems [15].  The GPP accelerating phenomenon 
[16] revealed that parallel programs can be evolved with less computational efforts 
relative to its sequential counterpart.  This phenomenon allows a new two-step ap-
proach: 1) evolves a solution in a highly parallel program format; and 2) serializes the 
parallel program to a functionally equivalent sequential program.  Based on GPP, a 
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combinational logic circuit design system, GPP+MLP [5], was developed.  Different 
combinational logic circuits were evolved with 2-input lookup-tables (2-LUTs).  The 
core of the GPP+MLP system consists of an Evolution Engine (EE) and a Multi-
Logic-Unit Processor (MLP) (see Fig.1 above).  The EE manipulates the genetic par-
allel programs and performs genetic operations.  The MLP evaluates the genetic par-
allel programs to determine their fitness. 

In conventional combinational logic circuit design, only a few standard logic gate 
types, such as AND, NAND, OR, NOR and NOT, are used.  The final circuit is a 
hardwired gate network with fixed types of logic gates.  Thus, all conventional com-
binational logic circuit design techniques are based on some restricted assumptions 
such as the gate types and the gate network structures.  The invention of FPGAs com-
pletely redefines the rules.  FPGA is a novel type of re-programmable VLSIs.  FPGAs 
have been developed rapidly and used widely in prototyping circuits or products with 
higher costs but lower volume productions, e.g. reconfigurable hardware, networking 
devices, etc.  One of the main differences between FPGAs and the conventional pro-
grammable logic devices is that the former use k-input lookup-tables (k-LUTs) while 
the latter are based on a fixed AND-OR (or OR-AND) matrix to implement Boolean 
functions.  A k-LUT is a 2k-memory-location, single-bit memory module, which uses 
the address lines as the inputs and returns the contents of the addressed location as the 
output of a Boolean function.  However, it is not a trivial task to determine an optimal 
LUT network directly from a truth table.  It usually goes through several stages such 
as synthesis, mapping, placement and routing in the translation of design into a bit-
stream ready for FPGA.  The major enhancement of the GPPLCS is that we adopt a 4-
LUT (instead of 2-LUT in the GPP+MLP) as the basis functional unit.  The evolved 
4-LUT network can be directly implemented on most commercial FPGAs, e.g. Xilinx 
Virtex-E Series FPGAs [6]. 

2.1 The Multi-logic-Unit Processor 

The 4-LUT MLP used in the GPPLCS is a general-purpose, tightly coupled processor.  
As shown in Fig. 2, the MLP consists of 16 4-LUTs (L0-L15) that perform logic 
operations; 16 variable registers (R0-R15) that store intermediate values and program 
outputs; and 16 read-only registers (R16-R31) that store program inputs and logic 
constants.  A variable register can only be modified by a dedicated 4-LUT (e.g. L0 
can write to R0 only).  The EE will preload the program inputs and the constants into 
the read-only registers before a parallel program is executed. 

In each processor clock cycle, each 4-LUT takes four input values from any four 
registers, then performs a logic operation and finally, writes a single-bit result to its 
corresponding output register.  For the MLP shown in Fig. 2, in each clock cycle, at 
most 16 operations can be performed simultaneously and 16 intermediate results can 
be carried forward to the subsequent parallel-instructions through variable registers.  
The function of a 4-LUT can be changed by modifying the content of the correspond-
ing 4-LUT.  With the advances in semiconductor technologies, multiple MLPs can be 
placed in a high capacity FPGA.  Multiple MLPs in an FPGA can be driven by a 
single MLP program to evaluate multiple training cases in parallel.  It will further 
reduce the fitness evaluation time. 
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Fig. 2. The 4-LUT MLP used by the GPPLCS 

2.2 The Evolved Parallel Programs 

Any combinational logic circuit can be represented by an MLP program.  An MLP 
program represents a combinational logic circuit.  The MLP is designed to accept any 
bit pattern (genotype) as a valid program without causing processor fatal errors such 
as invalid opcodes.  The genotype of a genetic parallel program is loaded and exe-
cuted in the MLP directly without pre-evaluation correction.  This is possible because 
all Boolean function outputs are Boolean variables. This closure property is especially 
important for the GPPLCS because of its random nature based on evolutionary tech-
nique.  The phenotype of an MLP program can be expressed as a parallel assembly 
program (see Program 1). 

#data 
CONSTANTS:(r16-r21)=0,(r22-r26)=1 
INPUTS:   (r27,r28,r29,r30,r31)<=(Cin,A1,A0,B1,B0) 
OUTPUTS:  (r00,r01,r02)=>(Cout,S1,S0) 
#program 
0: bF6E0 r31 r27 r08 r29 r00 
1: b3AA4 r00 r28 r06 r30 r00, bCB9E r00 r28 r30 r21 r01, 

b849E r31 r27 r31 r29 r02 

Program 1. A 2-bit full-adder evolved by the GPPLCS 

    As shown in the program, an MLP program consists of two sections, the #data and 
the #program sections.  The #data section defines constants, inputs and outputs.  
Before starting an execution, the MLP always initializes all variable registers (R0-
R15) to logic ‘0’.  The CONSTANTS line initializes read-only registers R16-R21 to 
logic ‘0’ and R22-R26 to logic ‘1’.  The INPUTS line defines input variables (Cin, 
A1, A0, B1 and B0) and assigns them to read-only registers (R27-R31).  The 
OUTPUTS line defines output variables (Cout, S1 and S0) and assigns them to vari-
able registers (R0-R2).  The #program section contains parallel-instructions that per-
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form Boolean operations.  For example, the numbered lines in the #program section 
in Program 1 list out two parallel-instructions.  For easy interpretation, all nop (no 
operations) sub-instructions are removed from the original program.  Each sub-
instruction consists of three parts: 1) a function name (b0000-bFFFF or nop); 2) four 
input registers; and 3) an output register.  The Boolean function of each sub-
instruction is denoted by a four-digit hexadecimal number which represents the 16-bit 
memory contents of the 4-LUT.  For example, the bF6E0 r31 r27 r08 r29 r00 sub-
instruction in the parallel-instruction “0:” is implemented by loading 
“1111 0110 1110 0000” to the corresponding 4-LUT.  The corresponding 4-LUT 
network of the program is shown in Fig. 3. 

Cin[r27]

Cout[r00]

B1[r30]
A1[r28]

A0[r29]

B0[r31]

3AA4

F6E0

CB9E
849E

0

0

0

S1[r01]

S0[r02]

 

Fig. 3. The 2-bit full-adder (four 4-LUTs in two levels) shown in Program 1 

3 Hardware Design and Implementation 

This section presents the design and implementation details of the MLP.  Fig. 4 shows 
the architecture of the core part of the MLP.  The 16 sub-instruction registers (SIR0-
SIR15) store the individual sub-instructions in the current parallel-instructions.  The 
16 processing elements (PE0-PE15) run sub-instructions and store results to their 
corresponding variable registers.  The Control Unit (CU) decodes parallel-instructions 
and gives control signals to all MLP components. Due to the limited size of the inter-
face bus between the CU and the host (64-bit only), more than one bus cycle is 
needed to transfer evaluation results of all rows in a truth table to the host. 

In most cases, the GPPLCS only uses the first eight variable registers (R0-R7) to 
store program outputs.  Thus, the MLP only needs to transfer the first eight variable 
registers to the host.  In order to maximize the usage of the 64-bit interface bus, the 
MLP is designed to buffer eight sets of program outputs (of eight training cases).  In 
this way, the evaluation results of the entire truth table are passed to the host in burst 
mode.  For example, if there are N rows in a truth table, it takes N/8 clock cycles to 
transfer all program outputs to the host. 
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Fig. 4. The architecture of the MLP core 

Fig. 5 shows a PE (PEi) which receives a sub-instruction from SIRi.  It stores the 
result in the variable register Ri.  The core of the PE is a 4-LUT.  It takes two proces-
sor clock cycles for the PE to execute one sub-instruction.  In the first cycle, four 
input registers are selected by four multiplexers (M1-M4), and their values are then 
latched into an Internal Operand Register (IOR).  In the second cycle, the 4-LUT uses 
the four latched operands to look up one bit and stores the result into Ri.  The IOR is 
used to pipeline the operations, i.e. selecting operands and looking up results, and to 
balance the long delay time on the route from the registers’ outputs to the multiplex-
ers’ inputs. 
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Fig. 5. A Processing Element 

The MLP is implemented on a Pilchard board [17,18] which is a high performance 
reconfigurable computing development environment employing an FPGA.  The Pil-
chard board is plugged into a 133 MHz synchronous dynamic RAM Dual In-line 
Memory Modules (DIMMs) slot of a PC.  The Pilchard board can achieve a very high 
data transfer rate by making use of the DIMM RAM interface of the PC.  Its efficient 
interface and low cost make it suitable for implementing the MLP.  Here are some 
major features of the Pilchard board: 
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 Host interface: DIMM interface (a 64-bit data bus and a 14-bit address bus) 
 Operating frequency: 100 MHz 
 FPGA device: XCV1000E-HQ240-6 
 OS supported: GNU/Linux 

The FPGA used in the Pilchard board belongs to the Virtex-E series.  The MLP 
uses only 2,515 slices.  It is about 20% of the 12,288 slices available in the FPGA.  
Moreover, only one (out of 96) BlockRAM is used by the MLP.  The critical path 
delay of the MLP is 9.965ns.  Hence, it can operate at 100 MHz. 

The MLP is coded in Very High Speed Integrated Circuit Hardware Description 
Language (VHDL) [19] which is a standard language for describing the structure and 
function of integrated circuits (ICs). 

4 Experiments and Settings 

To investigate the performance of the GPPLCS, we have used the system to evolve 4-
LUT networks for four combinational logic circuit problems (see Table 1).  Note that 
the 6-bit priority selector is to show the position of value ‘1’ which first appears start-
ing from the least significant bit in the 6-bit input.  If none of the bits is set to value 
‘1’, an extra output bit which shows the case of all zero value is responsible for this 
special case.  Since we have got six input bits (Input5 – Input0), we need extra three 
bits to indicate the position.  Therefore, there are 4-bit outputs. 

Table 1. Four combinational logic circuit problems.  The Ninput and Noutput denote the numbers 
of inputs and outputs respectively.  The Nrow denotes the number of rows in the truth tables.  
The Ncase denotes the total number of training cases 

name description Ninput Noutput Nrow(=2Ninput) Ncase(=Nrow×Noutput) 
MUX 6-bit multiplexer 6 1  64  64 
ADD 2-bit full-adder 5 3  32  96 
CMP 3-bit comparator 6 3  64  192 
PRI 6-bit priority selector 6 4 64  256 

4.1 Experimental Settings 

The main purpose of this paper is to show that the performance of the GPPLCS can be 
enhanced by the hardware MLP.  All experimental settings are listed out in Table 2 
below.  In order to have a fair comparison in the performance between hardware-
assisted GPPLCS and the pure software counterpart, evolutions of combinational 
logic circuits for the four combinational logic circuit problems are run on the same 
host (i.e. the PC where a Pilchard board locates).  The host in which the Pilchard 
board locates is a Pentium III 800 MHz PC with ASUS CUSL2-C motherboard.  The 
Pilchard board relies on the PC to communicate.  User can transfer data to the Pil-
chard board via the DIMM slot in the host PC.  The PC host is chosen because of the 
low level control required to mange the Pilchard board. 
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We test the problems with both the hardware-assisted GPPLCS and the pure soft-
ware GPPLCS.  The time for each tournament is recorded for comparison. 

Table 2. Experimental settings 

maximum program length 25 parallel-instructions 
initialization bit random, average 12.5 parallel-instructions 
selection method tournament (size=10) 
4-LUT function set b0000, … , bFFFF, nop 
inputs R32–Ninput … R31 
outputs outputs: R0 … RNoutput–1  
constants logic 0, logic 1 
crossover Prob. 0.1 
bit-mutation Prob. 0.002 
population size 2000 
raw fitness (f) the ratio of unsolved training cases 
success predicate all training cases are solved (f=0) 

5 Results and Evaluations 

Promising results are obtained for all the four combinational logic circuit problems.  
Table 3 summarizes the total elapsed times for the GPPLCS to evolve complete cor-
rect solutions with a pure software MLP and a hardware MLP.  The tH and tS columns 
list out the execution times of the hardware-assisted GPPLCS and the pure software 
GPPLCS respectively. 

Table 3. Summary of experimental results 

problems tH (in sec) tS (in sec) speedup ratio (tS / tH) 
MUX 68 689 10.13 
ADD 346 3824 11.05 
CMP 1,575 34,760 22.07 
PRI 720 14,651 20.35 

It can be seen that the speedup of hardware over software is significant.  For the 
ADD and MUX problems, the speedups are more than 10 times.  For the CMP and 
PRI problems, the speedups are more than 20 times.  The CMP problem takes nearly 
10 hours to complete with the pure software GPPCLS, but it only takes less than half 
an hour with the hardware-assisted GPPLCS.  Thus, problems of different levels of 
difficulties gain different speedups.  This is easily recognized because the more diffi-
cult the problems, the more tournaments (computational effort) are taken to complete.  
Fig. 6 shows the speedup curves for the four tested problems.  In these figures, the X-
axis is the number of tournaments taken while the Y-axis is the speedup ratio (tS/tH). 
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Fig. 6. The speedup ratio versus tournaments for the four tested problem 

Figures 6(a) and (b) show that the speedup ratios for the MUX and ADD problems 
increase steadily to around 10.  These two problems are relatively simple. Thus, the 
required computational efforts to evolve solutions for them are not so large.  Con-
versely, in Figures 6(c) and (d), the speedup ratios are less than five initially when the 
evolution takes only a few thousand tournaments.  As the evolution completes more 
tournaments, the speedup ratio increases rapidly to 22 times. 

It is found that the speedup ratio increases with the number of tournaments taken in 
the evolution.  It is obvious since execution time of each hardware evaluation is faster 
than that of each software evaluation by a certain theoretical limit.  Therefore, it is 
expected that the speedup ratio is higher in those problems which have a larger num-
ber of tournaments taken.  For example, in the MUX problem, only 10-time speedup 
is obtained due to the small number of tournaments taken (52,286).  However, 22-
time speedup is found in the CMP problem which takes 2,398,865 tournaments.  

6 Conclusions and Further Work 

In this paper, we have presented the design and implementation of a hardware-
assisted GPP Logic Circuit Synthesizer (GPPLCS) prototype which uses a 4-LUT 
Multi-Logic-Unit Processor (MLP).  The MLP uses a generic register machine archi-
tecture which can represent any combinational logic circuits.  Moreover, the architec-
ture of the MLP is so simple that multiple MLPs can be placed in an FPGA. 
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The hardware-assisted GPPLCS shows promising results in the speedup.  With the 
help of hardware, GPPLCS achieves a 22-time speedup at most in our tested prob-
lems.  Furthermore, the speedup ratio increases with the number of tournament taken 
in solving the problems.  It is particularly suitable for solving difficult problems. 

Obviously, the evaluations of individual rows on a truth table are independent. 
Thus, multiple rows of a truth table can be evaluated simultaneously.  If there are 
enough hardware resources to implement multiple MLPs, multiple rows of a truth 
table can be evaluated in parallel.  Based on the hardware resources usage of the cur-
rent implementation of the single MLP (i.e. 20% hardware resources of the Xilinx 
XCV1000E FPGA on the Pilchard board), we can place four MLPs in the current 
Pilchard board.  With this highly parallelized fitness evaluation engine, the evolution 
will be further sped up.  The speedup can further be increased to 4 times as the current 
one.  Hopefully, it can be up to about 90 times. 

In the near future, we have planned to implement a full-scale GPPLCS system on 
the Virtex-II Pro ML310 System [20] which comprises a Virtex-II Pro XC2VP30 
FPGA.  We shall design and implement a hardware evolution engine to perform ge-
netic operators.  Since the XC2VP30 is directly connected to the system bus of the 
ML310 system, the bottle-neck of the host-Pilchard interface can also be removed.  
We envisage that the full-scale GPPLCS will speed up the evolution significantly so 
that more complex combinational logic circuits, e.g. 4-bit multiplier, can be evolved 
in shorter evolution time. 
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Abstract. This paper explores distance measures based on genetic ope-
rators for genetic programming using tree structures. The consistency
between genetic operators and distance measures is a crucial point for
analytical measures of problem difficulty, such as fitness distance cor-
relation, and for measures of population diversity, such as entropy or
variance. The contribution of this paper is the exploration of possible
definitions and approximations of operator-based edit distance measures.
In particular, we focus on the subtree crossover operator. An empirical
study is presented to illustrate the features of an operator-based dis-
tance. This paper makes progress toward improved algorithmic analysis
by using appropriate measures of distance and similarity.

1 Introduction

In canonical tree-based genetic programming (GP), part of the search process is
carried out using transformation operators on tree structures [1]. From a topo-
logical point of view, these operators can be thought of as defining the neigh-
bourhood of these trees. To analyse various properties of the search process, it
is often useful to know the distance between two trees. For example, if we wish
to calculate a well-known measure of problem hardness, such as fitness distance
correlation [2, 3, 4, 5], we have to calculate the distance of a sample of trees from
a particular global optimum. As trees become closer to the optimum, we would
like the improvement in fitness to be positively correlated with the decrease of
distance, making the search more predictable. Furthermore, when studying di-
versity, the distance between two trees is required in order to find the average
pair-wise degree of similarity of the trees in a population. When the average
pair-wise distance of the population approaches 0, the population is converging
and we can expect the search to become stuck in a local optimum. The use of
tree structures and multi-node altering transformation operators (e.g. subtree
crossover), typical of GP, makes, among other things, defining operator-based
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distance measures complex. Thus, the study of fitness distance correlation has
largely progressed using systems with single-node altering transformation op-
erators like single-node mutation [4, 5]. This allows appropriate conclusions to
be drawn from empirical results for correlating the improvement of fitness with
the change in distance to an optimum. Likewise, most research for diversity
methods and measures in turn rely on using distance measures based on single-
node differences between trees [6, 7, 8, 9]. The most common are variations on
the Levenshtein edit distance.

Defining a distance measure, or measure of similarity, that is, in some senses
“bound” to (or “consistent” with) the genetic operators being used informally
means that if two trees are close to each other, or similar, one can be transformed
into the other in a few applications of the operator(s). The complexity involved
in using operator-based distance measures is two-fold: firstly, distance needs to
be re-defined for the specific operators being used. Thus, if we add a new muta-
tion operator or a variation of subtree crossover, we will need to reconsider the
distance definition. This results in a large design complexity. Secondly, actually
computing an operator-based distance can be much more computationally ex-
pensive than the more straightforward edit distance. For example, complexity
is increased for operator-based measures as typically the distance between two
trees depends on the current population. The computational complexity involved
in operator-based distance measures encourages the use of approximations such
as edit distance.

The complexity of the edit distance between two trees is in O(k), i.e. depen-
dent upon the number of k nodes in the trees. Computing the pair-wise distance
between every tree in the population has complexity O(M2 ×k), where M is the
size of the population and k is the average size of the trees. If the edit distance
measure defines a metric space, symmetry only requires M(M−1)

2 comparisons.
For fixed-length bit-string genetic algorithms, Wineberg and Oppacher showed
how this can be done in O(M ×k) with preprocessing of the population[10]. This
method would become more complex to design with a variable size and shape
representation like GP trees.

The contribution of this paper is the exploration of defining operator-
based distances and a discussion of the approximation of such distances. A
distance measure based on subtree crossover is defined for a constructed prob-
lem, and an empirical study demonstrates its features. Section 2 introduces
the concept of distance based on a genetic operator and its applications to
a canonical GP system. Section 3 defines a new distance measure bound
to standard subtree crossover. Since the calculation of this distance measure
may require a lot of computing resources, some techniques to approximate
this measure, thus reducing computational complexity without compromising
its efficacy, are presented. Section 4 presents some experimental results show-
ing the suitability of this distance measure, compared to a well known tree
distance measure.
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2 Defining Operator-Based Distance

Initially, we explore what operator distance means in a typical system. In this
section, we consider a simple steady-state GP system using syntax trees to repre-
sent individuals, and subtree crossover for variation. Subtree crossover proceeds
by selecting a subtree in a parent tree and a subtree in a donor tree, where any
node in either tree can be selected. Next, subtree crossover replaces the parent’s
subtree with the donor’s subtree. New trees replace the parent trees. Concerning
distance, the question we want to answer is: what is the distance between two
trees contained in the population according to a given operator, such as sub-
tree crossover? In other words, we would like to know the algorithmic distance
between two solutions according to a particular representation, operators, and
fitness measure. First, we define some notation:

– P is the population, containing M trees,
– T1 is the tree we want to compute a distance from, or the parent tree,
– T2 is the tree which we would like to transform T1 into,
– T1/T2 is the difference of the two trees. This operator produces a tuple

(sT1 , sT2), i.e. a pair of subtrees, where subtree sT2 ∈ T2 must replace sT1 ∈
T1 to make T1 = T2.

Supposing that T1 ∈ P , the crossover distance between T1 and T2 depends
on the ability to select sT2 from some tree in P . Thus, the crossover distance1

between T1 and T2 also depends on the population P : if T2 ∈ P , then sT2 will
also be in P . In the case where T2 ∈ P , we could state that the distance is equal
to 1, since it is possible to transform T1 into T2 in just one crossover application.
On the other hand, if sT2 /∈ P then it will require more than one application of
subtree crossover to make T1 = T2. Following this idea, calculating a distance
value in the light of multiple applications of an operator would need to consider
if any applications of subtree crossover to T1 would result in a new tree T ′

1
that required subtree s′

T2
to transform T ′

1 into T2. If s′
T2

∈ P , the distance is
2, since it is possible to transform T1 into T2 with 2 crossover applications. To
find distances greater than 2, we need to continue this process. This definition
of operator-distance is an accurate reflection of the subtree crossover operator
for a steady-state model with offspring-parent replacement. However, there are
obvious problems with calculating this distance. Let us assume the average size of
the M trees in P is k, and that crossover can choose any node in the population
as the root of the new subtree. The number of potential intermediate trees T ′

1
to consider for distances greater than 1 is M ×k. The distance calculation needs
to be carried out for each of these trees to decide if the distance is 2.

Now, if we consider a generational model, which seems to be largely used
in the GP community, an operator defined in terms of the population makes
defining distance using multiple operator applications even more difficult. For

1 The generic term “metric” would probably be more suitable than the term “distance”
here; anyway, we go on using the term “distance” for simplicity.
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example, we may consider the new tree T ′
1 after an operator application on T1

using the population P . In a generational algorithm, we will then need to con-
sider the next population P ′ when thinking about another operator application
on T ′

1. We can either create all the possible next populations or we can approxi-
mate them. Creating the future populations presents computational limitations.
Similarly, we might create the future expected populations using calculations
similar to the ones found in the schema theorems for GP [11]. However, find-
ing the future expected populations is also costly, essentially requiring a similar
amount of computation as actually running the GP algorithm.

Furthermore, let us assume that we calculate the distance between T1 and T2
as 1, meaning that one application of our operator to T1 can build T2. However,
when we actually execute our algorithm, it is not certain that this particular
application will occur. If we calculate the distance between T1 and T2 as 3, which
depends on two intermediate trees, we know with less confidence if either T ′

1 or
T ′′

1 will actually be produced. The decreasing amount of confidence we will have
in the accuracy of distance values based on future generations is likely to make
this type of distance measure less useful. Therefore, in practical applications of
operator-based distance measures, it may only be useful to know the likelihood
of creating a particular tree T2 in the next generation.

To overcome the difficulty in defining a multiple operator distance, and to
incorporate the stochastic properties of the algorithm, we can consider operator-
distance in terms of the probability of correctly applying the operator once. That
is, if one tree is in the neighbourhood of another, how likely is it that this neigh-
bour will be found. Since we know (or we can easily calculate) the values of
parameters like the selection probability of trees and the frequency of all sub-
trees in the current population, we could assign a probability to the selection of
all subtrees in the next population. If we know what subtree is required to make
two trees equal, then we may approximate distance in terms of the probability
of selecting this subtree. While this measure would only consider one operator
application, it will do so with a higher confidence and at significantly less com-
putational effort then considering the future expected populations. However, we
could attempt to approximate the creation and selection of subtrees in future
populations using a similar method. We now look at this new idea of distance
measure more closely.

The new operator-based distance can now be formulated as: given an operator
V , trees T1 and T2, and a population of trees P , can V be applied such that
V (T1, P ) = T2? That is, can an operator V , that uses the genetic material in
P , be applied once to T1 to produce T2? If the answer is ‘yes’, we would not
say that distance is 1, but we would bind this distance value to the probability
of generating T2 from the application of V to T1. Instead of asking for the
required number of edit operations to transform a tree T1 into another tree
T2, we ask how probable is it that an operator will transform T1 into T2. In
other words, if the required genetic material to transform T1 into T2 is present
in the population, how probable is it that our operator V selects it? In case
T1 and T2 share no common material, this will be the probability that subtree
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crossover selects the root of T1 and a subtree equal to T2. Note that using
this type of distance measure reporting a probability may pose a problem doing
fitness-distance correlation studies. We are currently looking at ways to overcome
these problems by accurately approximating the likely construction of missing
subtrees. We will now describe this probability-based operator distance measure
for subtree crossover.

3 Subtree Crossover Distance

We will consider a subtree crossover distance between two trees in a population in
context of the genetic material contained in the population. Given the subtree
crossover operator VSC , a distance function can be defined by the following
pseudo-code:

func distance(T1, T2, VSC , P ){
(sT1 , sT2) = T1/T2
ps1 = probSelecting(sT1 , T1 )
ps2 = probCreating(sT2 , P )
return ps1 ∗ ps2

}

Given the subtree sT2 that needs to replace sT1 ∈ T1, the distance is defined in
terms of the probability of selecting sT1 in T1 and the probability of creating
(or selecting) sT2 from P . Both functions, probSelecting() and probCreating(),
require knowledge of the selection probabilities used in the algorithm. Finding
sT1 and sT2 and determining the probability of selecting sT1 ∈ T1 can be done in
linear time in the size of T1 and T2. The crux of the subtree crossover operator-
based distance is finding the probability of generating the subtree sT2 . As T2
will be in the current population, the function will report a non-zero value (this
is the case if selecting the root-node of T2 is possible).

The probSelecting() function can be defined for subtree crossover based on the
node selection probability. Given uniform node selection, selecting the subtree
sT1 ∈ T1 has the probability of 1

|T1| . The probCreating() function for subtree
crossover can be defined to consider all the occurrences of the subtree sT2 in the
population and their probability of selection. That is, for a tree that contains sT2 ,
we may want to know how likely that tree will be selected by a selection method.
We will then want to know the probability of selecting sT2 . Determining the
number and selection probability of each occurrence of sT2 ∈ P is in O(M × k),
where k refers to the average size of an individual in the population. To carry
out this search for each pair-wise distance computation would have a complexity
in O(M3 ×k2). Preprocessing the population prior to carrying out the pair-wise
distance calculation can reduce this complexity.

So far we have limited our distance measure to the single application case,
which would seem appropriate for standard GP as only one application of an
operator is typically used to generate a new individual. We have also considered
the whole population as a source of potential subtrees. However, as we know,
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evolutionary algorithms use fitness-based selection to implement solution compe-
tition. Therefore, not all trees have the same likelihood of being selected as donor
trees. We can use this fact to provide an effective way of reducing complexity of
this operator distance while preserving the utility of the measure.

A way to reduce the complexity of the above subtree crossover-based defini-
tion, which can also be applied for other operator-based definitions, is to only
consider those trees and their subtrees that are likely to be selected. We can
define threshold values α for tree selection and β for subtree selection. Then,
we can produce the set of fit (or likely to be selected) trees F according to the
following definition:

F = {∀i ∈ P | Better Than(i,α)},

where the predicate Better Than(i,α) is True if individual i has better fitness
than more than α individuals in the population. The value of α should reflect the
behaviour of the selection method being used, e.g. in terms of the tournament
size in tournament selection. We can find the set F in O(M) time and are only
required to do so once for the whole population (if we are calculating the pair-
wise measure). Now, for subtrees s and w in an individual i ∈ F , we can define
the set R of the likely-to-be selected subtrees according to:

R = {(∀s ∈ i) ∧ (i ∈ F ) | |{∀w ∈ i | |s| = |w|}|
|i| > β},

That is, a subtree s in individual i (from F ) will be in R if the number of subtrees
in i, with the same size as s, divided by the the total size of i is greater that β. In
effect, we are only considering those subtrees of a given size that are likely to be
selected by a uniform node selection probability. For example, in a full tree with
7 nodes (depth 3), and a uniform node selection probability, selecting a specific
subtree with 3 nodes has probability of 1

7 . Selecting any (of the two) subtrees of
size 3 has a probability of 2

7 , and selecting a subtree of size 7 has a probability
of 1

7 . However, selecting a subtree of size 1 has probability of 4
7 . Thus, while it

may not be the exact probability of selecting a specific subtree with 3 nodes, we
can focus our attention only on those subtrees that are more likely to be selected
due to their size. So, if subtree crossover needs to select a very large subtree to
transform one tree into another, we might assume the likelihood of doing this
will be so small that it is effectively 0. Additionally, if the missing subtree is only
in a tree that has a very low chance of being selected, due to its poor fitness,
again it may be reasonable to report a probability of selection as 0.

In summary, two ways to reduce the complexity of a subtree crossover-based
distance are: (1) only consider the trees in the population that are likely to be
selected, and (2) in those trees, only consider the subtrees that are likely to be
selected. Tuning the parameters α and β will allow us to reduce the complexity
of the computing the population pair-wise distance. However, a potential disad-
vantage of this approximation, particularly in discrete fitness spaces, is the fact
that the number of individuals with fitness better than α individuals in the pop-
ulation can vary. Thus, if the population has no duplicating fitness values, this
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approximation scheme may reflect reality. However, if the population contains
only one unique fitness value, then all the individuals have the same probability
of being selected. Preprocessing the population prior to computing the pair-wise
edit distances can also consider α and β to reduce the memory demands of the
distance calculation. We now complement the above discussion of operator-based
distance measures with an empirical study of one such operator-based measure.

4 Experimental Results

In this section, we investigate the practical side of implementing an operator-
based edit distance measure for the subtree crossover operator. To reduce the
complexity of this study and its presentation, we use a constructed problem
similar to the problems that emphasise solution structure, or tree shape, like the
Lid [12] problem.

4.1 The GP System and Problem

The GP system is the same as above, but a new tree produced by subtree
crossover replaces the worst fit one in the population (instead of the parent tree).
Again, only subtree crossover is used, where node selection for subtree crossover
is uniform. Tournament selection is of size 3, and a population of 20 trees is
used. The functions are two-argument nodes that have no meaning. Primitives
are empty, null nodes. Thus, our trees are binary, where internal nodes always
have two child nodes. We use a maximum depth of 7 during subtree crossover,
and initialise the population with full trees of depth 3, where these tree shapes
are all identical.

A random tree shape is generated to define the goal state, or instance. A tree
shape is generated by randomly picking an odd number between 16, to ensure
trees are not too small, and 31, the size of a full tree of depth (7-2). We then
randomly, with uniform probability, assign two child nodes to each available
leaf node, starting with a root node. All leaf nodes that have depth less than
the maximum are deemed available. This tree shape defines the instance. This
construction method is similar to one found in [12].

The tree shape, defining an instance, is abstracted by representing it by the
number of nodes present at each depth. Fitness is the absolute difference between
the number of nodes at each depth in a candidate tree and the target random tree
shape. For example, Figure 1(a) shows a random tree that defines an instance,
and Figure 1(b) shows a perfect solution with the same number of nodes at each
depth. Note that the shape of the solution is not identical and allows flexibility,
as well as possible deception, in the search process.

We generate 30 random instances, and collect 30 random runs of the system
for each instance, with a maximum of 500 generations (subtree crossover appli-
cations). The GP algorithm found an optimum solution 614 out of the 900 runs,
the earliest of these at generation 16 and the latest at generation 499. The aver-
age generation where an optimum was found was 291, with a standard deviation
of 117 generations.
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(a) (b)

Fig. 1. An instance is defined by a randomly generated tree shape (a) and can be
solved perfectly by a candidate tree shape that has the same number of nodes at each
depth (b)

4.2 Operator-Based Distance

In this study, we will use a simpler version of the operator distance defined in
Section 3. Specifically, we will only consider the frequency of subtrees required
to make two trees equal. We define subtree crossover distance DSC between two
trees T1 and T2, given the population P , as:

DSC(T1, T2, P ) =
occur(sT2 , P )
#subtrees(P )

, (1)

where subtrees(P ) returns the set of all subtrees in a population, and occur(s, P )
counts the number of occurrences of a subtree s in a population P . Earlier we
defined the difference of two trees as T1/T2 = (sT1 , sT2), where the resulting tuple
defined the subtree in T1 that needed to be replaced by sT2 to make T1 = T2.
We will define our operator-based distance for an average pair-wise distance
measure in a population, thus sT2 ∈ P . However, it is possible that sT2 will only
be represented by the tree T2 itself, requiring that sT1 = T1.

4.3 Complexity

To calculate the average pair-wise distance using DSC requires M2 −M distance
calculations, where M is the number of trees in the population P . An edit
distance pair-wise calculation would have an average complexity, assuming k
is the average size of a tree in the population, of O(k × M2). However, and of
particular interest here, our operator-based distance DSC , while having the same
worst case bound, is likely to be less as the entire trees do not need to be explored.
As soon as two subtrees that do not match are encountered, DSC computes the
frequency of the missing subtree and returns. That is, the complexity of DSC

is in O(m × M2), where m ≤ k. The function subtrees can incur a memory
cost as it needs to store all unique subtrees in P and their frequency. However,
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Fig. 2. A scatter plot showing the correlation between the edit distance and the
operator-based distance, average pair-wise distance in each population

this function only needs to be carried out once prior to each average pair-wise
distance calculation, and requires linear time to visit all subtrees.

4.4 Pair-Wise Distance

Measures of distance or similarity can be useful for a variety of analysis. For
example, the average pair-wise distance between all the trees in the population
can indicate the amount of genetic material remaining in the population, as well
as the likely behaviour of the operators. In both cases, it is important that the
distance measure reflects the behaviour of the operator for meaningful results.
We carried out two average pair-wise distance calculations using a standard edit
distance and our subtree crossover operator-based distance. The edit distance
measure counts the number of non-identical nodes between two overlapped trees.
We normalise the average pair-wise distance of a population by dividing it by
the average tree size (number of nodes) in that population. The operator-based
distance measure divides the number of occurrences of the missing subtree by the
total number of subtrees in the population, indicating the likelihood of selecting
this missing subtree (but not with respect to fitness). We subtract this number
from 1 to produce a measure of dissimilarity similar to the edit distance, where
values close to 0 indicate high similarity, and values close to 1 indicate high
dissimilarity.

Figure 2 shows the correlation between the two above measures. As the
operator-distance is based on the frequency of missing subtrees in the popula-
tions, which tend to contain more and more subtrees in subsequent populations,
the range of these frequency values will also vary from population to population.
Therefore, to visualise the frequencies with varying ranges more effectively, we
multiply a population’s average pair-wise operator distance by the population’s
average tree size. This value is then scaled for the [0, 1] range. We can see that for
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Fig. 3. A scatter plot showing the correlation between the edit distance and the
operator-based distance complexities, or the average number of nodes visiting during
the calculation of each pair-wise distance measure

low values of dissimilarity (∼ 0 to 0.4), there is the expected positive correlation.
However, as the edit distance dissimilarity increases, the operator-based dissim-
ilarity takes on a wide range of values, and vice versa. Even in our simulations
using a simplified problem of only tree shapes with no node contents and a fairly
simple measure of operator distance, the disparity between the operator-based
distance and the common edit distance is clear. That is, two trees that appear
to be similar according to edit distance are not necessarily similar in terms of
our operators.

4.5 Complexity Reductions

As mentioned earlier, there may be some cases where an operator-based distance
measure can reduce the complexity of measuring distance. For example, using a
basic string edit distance generally requires that all nodes of each tree need to
be checked. However, if we are using only the subtree crossover operator, if the
root of a subtree does not match with the root of another subtree in a second
tree, we do not need to continue the comparison of these subtrees. That is, we
know that the whole subtree will need to be replaced using subtree crossover to
make the two trees equal.

Figure 3 shows the correlation between the complexities of each pair-wise
distance measure. We can see that the edit distance complexity, approximated
here as the average tree size in the population, grows at a faster rate than the
operator-based distance, where the former is a function of size and the latter
a function of dissimilarity. However, this should be taken in the light of the
higher cost of preprocessing the population prior to the operator-based distance
calculation as well as the memory constraints involved in storing and looking up
the frequencies of various subtrees. For example, Figure 4 shows the evolution
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Fig. 4. The number of unique subtrees in each generation for all runs. Initially, with a
population of full trees of depth 3, there are only three unique subtrees

of the number of unique subtrees in each population during the runs. For a
population of size 20, with a depth limit of 7, there averages around 65 or so
unique subtrees that need to be stored. While the representation used here is
quite simple (binary trees with no node content), a memory requirement (number
of unique subtrees) for computing operator distance that is within a constant
multiple of the population size is promising.

5 Conclusions

This paper represents a first step in the study of the issues concerning operator-
based distance measures for genetic programming. The variable shaped and sized
solutions in the tree representation can make defining operator-based distance
measures difficult. Therefore, it has become very common to use edit distance
measures instead. Distance measures that do not capture the operator behaviour,
however, are not always applicable for analytical studies like fitness distance
correlation. Also, these measures need to be used carefully when studying popu-
lation diversity. Thus, we aim to examine the practical difficulties in measuring
distance using the canonical operator, subtree crossover. A series of possible def-
initions of operator-based distance were defined in this paper. Importantly, we
discussed ways of reducing the complexity of such measures by means of various
approximations. An empirical study showed how an edit distance measure and
an operator-based distance measure can fail to correlate. We showed in the simu-
lations that operator-based distance can result in a reduction of complexity over
an edit distance measure, where complexity is the number of nodes examined
during a pair-wise distance calculation. Our future work is exploring other def-
initions of operator-based measures, for subtree crossover and other operators,
and the tradeoffs involved with reducing their complexity.
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Abstract. We extend our analysis of repetitive patterns found in genetic
programming genomes to tree based GP.

As in linear GP, repetitive patterns are present in large numbers. Size
fair crossover limits bloat in automatic programming, preventing the evo-
lution of recurring motifs. We examine these complex properties in detail:
e.g. using depth v. size Catalan binary tree shape plots, subgraph and
subtree matching, information entropy, syntactic and semantic fitness
correlations and diffuse introns. We relate this emergent phenomenon to
considerations about building blocks in GP and how GP works.

1 Introduction

Repeated sequences are commonplace in natural genomes. Biologists have dis-
covered a vast amount of repetition in the DNA of microbes, plants and ani-
mals [1]. In fact it is now known that less than 3% of a human genome consists
of protein-coding genes whereas around 50% of it consist of repetitive sequences
[2, 3]. Biologists have recently turned their attention toward these patterned se-
quences [4, 5, 6] because the huge percentage of it indicates that these sequences
play a major role in hereditary biology. The question we are asking is whether
this emergent phenomenon might also be present in artificial genomes used for
genetic programming.

Our initial search turned up repetitive sequences in linear GP genomes [7].
Here we turn to tree GP genomes. We find there are indeed, small and large
repeated patterns in large trees which have been evolved by genetic program-
ming. It can be observed that evolved trees are incrementally constructed from
high fitness subtrees which are, however, not classic GP building blocks. Instead
diffuse introns ensure that most code is robust to change.

We suggest that observations of this type can shed some new light on the
old question of building blocks in GP [8]. Do they exist? If so, how does GP use
them? If they do not, how does genetic search succeed?

Our route in this paper is roundabout: we start by following up on our work
which suggests repeated patterns are prevalent in linear genetic programming
[7] but now look at tree based GP. We use our time series modelling and Bioin-
formatics classification test problems (described in Section 2 and [7]) to show
that, despite high mutation rates, multiple large syntactic and semantic repeated

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 190–202, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Left: Mackey-Glass chaotic time series http://neural.cs.nthu.edu.tw/jang/
benchmark/, τ = 17. Right: Number of amino acids in nuclear and non-nuclear proteins.
To reduce clutter only 5% of the proteins are plotted. The 3 (of 20) amino acids and
function where suggested by sensitivity analysis of the smallest GP model

patterns can occur in standard subtree crossover as well (Section 3). We deepen
this analysis in Section 4: where we measure tree shape, entropy, sub-fitness and
sensitivity within trees. This will lead us back to suggest (Section 5) at least in
some simple modelling and prediction applications: 1) “introns” are somewhat
diffused rather than discrete subtrees with a well defined root node that imme-
diately nullifies their effect and 2) GP incrementally assembles solutions from
large fit components, which are somewhat different from the classic “building
block”. Section 6 concludes.

2 Demonstration Problems

We have chosen two moderately difficult benchmark problems to represent typ-
ical modelling and prediction applications of genetic programming. Both were
originally used as machine learning benchmarks. The Mackey-Glass chaotic time
series has been used to demonstrate scientific, medical and financial modelling,
e.g. [9]. The GP system is given historical data from which to predict a next
value. We used the IEEE benchmark discretised into 8 bit unsigned integers, see
Figure 1, left. All 1201 data points were used for training.

The second benchmark is a binary classification bioinformatics problem.
Reinhardt and Hubbard [10] have shown that amino acids in a protein can
be used to predict its location in the cell. They trained neural networks to dis-
tinguish between seven cellular locations in animals and microbes. We restrict
ourselves to localising animal proteins (normally it is known if a protein is animal
or bacterial) and a binary classification problem. To this end we evolve models
which predict if an animal protein will be found in the cell nucleus or elsewhere.
I.e. in the cell cytoplasm, in the mitochondria or outside the cell [10]. We used
the same Swissprot data for 2427 proteins as used in [10]. There are 1097 nuclear
(and 1330 non-nuclear) sequences of amino acids (see Figure 1, right). Data were
split evenly into training and test sets.
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Table 1. GP Parameters for Mackey-Glass time series prediction. (Parameters for
protein localisation, where different, are given in brackets [proteins:]).

Function set: MUL ADD DIV SUB operating on unsigned bytes [proteins: floats]
Terminal set: Registers are initialised with historical values of time series. D128 128

time steps ago, D64 64, D32 32, D16 16, D8 8, D4 4, D2 2 and finally
D1 with the previous value. Time points before the start of the series
are set to zero. Constants 0..127.
[Proteins: Number (integer) of each of the 20 amino acids in the pro-
tein. (Counts for code B were split evenly between aspartic acid D and
asparagine N. Those for Z, between glutamic acid E and glutamine Q.)
100 unique constants randomly chosen from tangent distribution (50%
between -10.0 and 10.0) [13]. (By chance none are integers.)]

Fitness: RMS error [Proteins: 1
2True Positive rate + 1

2True Negative rate [14]]
Selection: non elitist, tournament size 7. Pop Size 500 [proteins: 5000].
Initial pop: ramped half-and-half (2:6) (50% of terminals are constants)
Parameters: 50% mutation (point 22.5%, constants 22.5%, shrink 2.5% sub-

tree 2.5%). Max tree size 1000. Either 50% subtree crossover or 50% size
fair crossover (90% on internal nodes), FXO fragments ≤ 30 [12]

Termination: 50 generations

3 Genetic Programming Configuration

Even though we expect crossover [11] to be responsible for repeated sequences,
we follow recent GP practise and use a high mutation rate and a mixture of
different mutation operators. In some runs, to avoid bloat, we also used size fair
crossover (FXO) [12]. See Table 1.

Ten runs each with an initial population of 500, suggested this was too small
for the protein localisation benchmark. There was a correlation (0.4 size fair and
0.2 two point (2XO) crossover) between the fitness of the best random tree and
that of the best 50 generations later. So a population of 5000 and 50 generations
was used. (The correlation co-efficient fell to 0.17 (FXO) and 0.12 (2XO) and
mean holdout fitness rose 4% for both types of crossover.)

4 Results

4.1 Performance and Size of Mackey-Glass and Protein Programs

Table 2 summarises each of the ten runs with the two types of crossover on the
Mackey-Glass modelling problem. As expected, size fair runs are both faster and
evolve significantly smaller trees (Wilcoxon Two Sample Test p=0.007). Also as
expected with standard GP, tree size increases up to the maximum size limit
(1000) when evolution is continued to 500 generations. Figure 2 shows the fall in
RMS error of the best individual in the population in each of the ten extended
runs with standard crossover. It is the formation of repeated subtrees in these
runs (and similar protein prediction runs) that we shall concentrate upon. While
at first sight progress appears continuous, note that there are many generations
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Table 2. Best Mackey-Glass prediction error after 50 generations of tree GP runs.
Using size fair (FXO) and standard two point (2XO) crossover. Rows are RMS error
and size of best of run tree and elapse time. Results after 500 generations (2XO only)
show all runs improved fitness but trees increased enormously in size

Mean
FXO error 4.42 4.38 4.85 4.89 4.01 4.92 3.84 4.65 3.66 4.80 4.44

size 33 53 81 39 55 25 15 13 69 27 41
secs 226 342 363 275 363 205 83 44 467 163 253

2XO error 3.82 3.59 3.81 4.27 4.28 2.20 2.78 4.16 2.38 3.47 3.48
size 59 45 143 117 47 87 91 43 123 145 90
secs 617 384 610 416 412 503 543 269 967 645 537

2XO error 3.74 1.51 1.18 3.66 3.41 1.09 2.78 3.78 1.08 1.85 2.41
500 size 793 705 669 957 963 883 847 923 957 467 816
gens secs 13200 12200 11400 16100 11900 14500 11000 14300 22300 9500 13600

Fig. 2. Evolution of smallest RMS error
in ten 2XO M-G runs. Despite size and
shape changing from one generation to
the next, for many successive generations
the best fitness is identical to that in the
previous generation. (Initial fitness, not
shown, of the ten runs varied from 5.5
to 18.3.)
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where the best fitness is identical to that in the previous generation even though
the best individual in the population has been replaced (by crossover/mutation).

Table 3 summarises the ten runs on the protein prediction problem with both
types of crossover. Again size fair crossover produces small trees more quickly
than standard GP. As with Mackey-Glass both tree GP approaches produce
models with a similar performance to linear GP [7]. That is GP is comparable
to the best neural network approaches given in [10].

To confirm our previous results on the evolution of tree shapes [15, 16] also
hold on the two benchmarks, Figure 3 plots the size (total number of nodes) and
(maximum) depth of trees at every 10 (left) or 100 (right) generations during
each of the 2×ten standard GP runs. The cross hairs give the population mean
and standard deviation. As expected, the GP runs do not converge, instead the
populations contain trees of different sizes and depths. Figure 3 is plotted on top
of statistics relating not to GP but to the underlying distribution of binary trees
(labelled “full”, “5%”, “peak”, “95%” and “minimal”) [16]. Cf. the Catalan
distribution of subtree sizes [17–p241–242]. While initial populations contain
only small trees, Figure 3 shows they evolve into populations of trees whose
shape lies near that of the most popular trees in the underlying distribution.
Note Figure 3 shows: in radically different problems, similar shaped trees evolve.
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Table 3. Holdout set fitness on Bioinformatics benchmark. (Fitness is mean accuracy
over nuclear and non-nuclear animal proteins.) 10 tree GP runs with size fair (FXO)
and 10 with standard two point (2XO) crossover with a population of 5000 and 50 gens.
As with Mackey-Glass, size fair runs are both faster and evolve smaller trees

Mean
FXO percent 80 82 81 79 82 78 82 80 79 80 80

size 57 77 43 47 69 77 85 59 53 41 61
secs 1400 2300 1300 1200 2100 1700 1600 1700 1400 1400 1600

2XO percent 81 82 80 82 83 82 83 83 82 81 82
size 571 349 223 711 843 283 435 195 515 147 427
secs 6100 5600 4200 6500 9600 4100 4500 4200 4800 3900 5400
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Fig. 3. Evolution of mean depth and size with mutation and standard crossover (2XO).
10 Mackey-Glass (left) and 10 protein runs (right). To reduce clutter standard devia-
tions are only plotted every 100 generations (10 right). As expected [15], size increases
until largest in population reach limit (1000) and much of the populations lie near the
peak in the distribution of tree shapes

4.2 Shape of Subtrees

The previous section has established that standard GP finds good models on
both problems and programs’ size and shape evolves as expected. This section
starts to consider what is happening inside the trees. Figure 4 uses the same
size-depth plots as Figure 3 to look at the evolved programs. Instead of one
point per tree, there is a point for each node in each of the best trees in the
last population of each run. Mostly subtrees lie between the 5% and 95% lines.
This indicates that subtrees within the best program at the end of the runs have
distributions of size and shape similar to that of the whole trees in previous
generations. I.e. there is a strong tendency for trees to be composed of subtrees
which are also randomly shaped. This fractal self similarity would be expected
of random trees.

4.3 Repeated Code Fragments
In all cases using standard crossover (2XO), GP evolved best of run trees con-
taining large repeated patterns. As with linear GP, this happens despite a high
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Fig. 4. Depth and size of every subtree in best of run trees (2XO). 10 Mackey-Glass
(left) and 10 protein runs (right). Note the similarity with the shape of whole trees
as they evolved, Figure 3. (Small amount of noise added to spread data that would
otherwise be plotted directly on top of each other.)

level of mutation and a size limit. Figure 5 shows the identical repeated patterns
(allowing overlaps) for one evolved program. Between 56% and 91% (mean 71%)
of the ten best of run Mackey-Glass (2XO) models are part of repeated sub-
graphs which are too big to have formed by chance. The figures for the ten best
of run protein prediction programs are: 33%–92%, mean 74%. See Figure 7. The
replications in Figures 5 and 7 refer to any fragment of the whole tree, while the
rest of Section 4 considers only whole non-overlapping subtrees.

4.4 Syntactically Repeated Subtrees

Figure 6 shows the location and size of exactly repeated subtrees in the largest
of the protein prediction trees. Figure 8 refers to the same twenty best of run
programs as Figure 7, however it considers only exactly repeated subtrees (rather
than any fragments). The requirement to include all the leafs in a repeated
fragment tends to reduce their size but we see a similar picture: in every run
repeated subtrees (too large to be due to chance) are evolved.

4.5 Semantically Repeated Subtree Outputs

The previous sections have only considered repeated code at the syntax level.
Now we consider the semantics of the evolved programs. Since there are no
side-effects, repeated subtrees must return exactly the same values. Figure 9
shows on the training examples the fraction of the program where the semantic
value of the subtrees are the same, and where they are highly correlated. It
shows semantic repetition is even higher than when just considering program
syntax. Part of the difference is due to constants (which are always correlated
with each other). However this is not enough to explain all of the difference,
suggesting non-trivial syntactically different subtrees have been evolved which
produce correlated answers. Part of the explanation may be symmetries, such as
+ and ×, whereby non-identical code calculates identical answers. Alternatively
the monolithic fitness function may encourage redundant code.
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Fig. 5. Repeated patterns in the largest protein prediction program (2XO, 843 nodes).
largest pattern (133 nodes) in black. Other nodes in repeated patterns are filled accord-
ing to size of the repeated pattern (33–132 grey and 11–32 light grey). Unique nodes
and nodes which are part of small patterns are not filled

Fig. 6. Same program as in Figure 5. Here whole subtrees are exactly repeated. Nodes
are filled according to size of the repeated subtree. Unique nodes and nodes which are
part of small patterns (3 nodes or less) are not filled. Two largest (59 nodes, right hand
side) coloured red. Note these are partially repeated elsewhere in the tree (e.g. 55 node
subtree shaded black)
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Fig. 7. Size of repeated pattern v. fraction of best of run trees (2XO). 10 Mackey-Glass
(500 gens, left) and 10 protein runs (50 gens, right). In every run the largest repeated
pattern is too big to arise by chance
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(500 gens, left) and 10 protein runs (50 gens, right). In every run the largest repeated
subtree is too big to arise by chance

Fig. 9. Upper curves show number of
highly correlated subtrees v. fraction of
the best largest protein prediction tree
(2XO run 4, cf. Figures 5, 6 and 10–12).
For comparison, the lower (solid) curve
refers to syntactic repeats (rather than
semantic). It is the top curve from Fig-
ure 8 (right). Many subtrees (22%) pro-
duce a constant. This gives rise to the
sudden jump at 0.78 but only explains
part of the difference between syntactic
and semantic repeats
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Fig. 10. Left: Entropy of each node in largest protein program (cf. Figures 5, 6 and
9–12.) Darker grey indicates more variation across the training set. At levels 7 and 9
there are two links where large subtrees pass through bottle necks. Right: Entropy on
each of 422 paths from leaf to root. The bottle necks near the root show up as repeated
dips in the tail. This structure is an artifact caused by paths passing through similar
routes near the root but having different lengths

4.6 Entropy of Subtrees

As might be expected, variation in values calculated by subtrees across the train-
ing set has a strong tendency to increase from the leafs to the root. This is also
true of random programs. Figure 10 shows the variability within the largest
protein location tree (2XO, 50 generations). We use information entropy [18]
(calculated using signal value to 6 decimal places) as our measure of variation.

The protein location programs do not contain “classic” intron nodes. I.e. there
are few places deep in the tree where information passes only from one input of
a function to its output, totally ignoring the other input. The entropy, if any, of
“classic” intron nodes would come from just one input. Thus the entropy of an
“all or nothing” intron would be the same as that of its active argument.

Sometimes entropy (i.e. variability) falls from the leaf towards the root are
caused by a SUB subtree with both arguments referring to the same amino acid.
This has no variation since it always yields zero, so the subtree has less entropy
than either of its leafs. (Random programs also contain bottleneck nodes of low
entropy.) Most cases where entropy falls are very close to a leaf. However a few
of the largest protein location (2XO) programs do possess bottlenecks where
entropy falls on the output of a large subtree. This means the subtree has less
effect on the whole program.

4.7 Fitness of Subtrees

As might be expected, correlation or anti-correlation with training data tends
to rise from the leafs to the root. Between 15 and 78 (depending on the run)
subtrees in each best of run program exceed the performance of random search
(106 ramped half-and-half trees). See Figure 11. Since fitness tends to fall away
from the root, there are more lower fitness subtrees. Secondly, despite being non-
elitist, fitness increases monotonically. Therefore the fitness distribution within
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Fig. 11. High fitness (or anti-fitness)
subtrees as a fraction of the 10 best pro-
tein trees (2XO). Note range of horizon-
tal axis. Since fitness is a very non-linear
function, we define a normalised fitness
as being, for each run, the generation in
which a program of the corresponding fit-
ness was first found. All runs exceeded
the best fitness found in a million ran-
dom trees programs by generation 8.
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Fig. 12. Importance of nodes within protein prediction trees. Left: Largest protein
prediction tree. The 125 (15%) subtrees which change more than 10 training cases are
highlighted in black. (Same example as in Figures 5, 6–10.) Note several large repeated
subtrees do not contribute to fitness. Right: Number of training cases which subtrees
influences as a fraction of the 10 2XO best of run programs. Solid curves plot where
impact is more than 0.005%. Dashed lines: node causes prediction to change

the best subtrees can also be explained by saying: the longer evolution has had to
work since a fitness level was reached the larger the number of subtrees exceeding
that fitness there will be.

4.8 Importance of Subtrees (Sensitivity analysis)

While the trees do not contain “classic introns”, where one argument of a func-
tion has no impact on its output, some nodes do have much more impact than
others. To see this, we replaced each subtree in turn by its median value and
counted the number of training cases where this changed the output. The upper
solid curves on the right of Figure 12 plot the number of fitness cases where
the output was changed by more than 0.005%. While the lower dashed curves
show the number of cases where subtrees contribute to fitness, i.e. the number of
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to between 7% and 57% of the program. I.e. on average 30% of subtrees can be
replaced without changing any of the program’s predictions.

5 Discussion

Sections 4.1 and 4.2 confirm (cf. [15]) trees have evolved to the same fractal
shape as random trees but Sections 4.3–4.5 show repeated syntactic and semantic
patterns which are far from random. Sections 4.6 and 4.7 suggest GP programs
(with non-Boolean function sets without side effects) are composed of high fitness
subtrees which mostly pass information upwards towards the root. That is, they
are not dominated by classic “introns” (which ignore data from one or more
subtrees). However the sensitivity analysis (Section 4.8) shows large parts of the
tree, including repeated parts, can be replaced by a constant and have no or
little effect on fitness.

We suggest the repeated patterns seen in GP used for modelling and predic-
tion are not like classic GA “building blocks” [8]. They are not small. They have
high fitness on the whole problem, rather than sub-components of it. It appears
evolution is gradually, haphazardly, assembling a complete program by repeat-
edly reusing subtrees it has already discovered in ways allowing it to squeeze out
marginal incremental improvements. In the process some components become of
lesser importance in the final program.

6 Conclusions

Correlation between performance of initial and evolved populations suggests
lack lustre initial random programs can have an impact on the final outcome.
Correlation might be a useful population size analysis tool.

As expected, size fair crossover (FXO) [12] and a range of mutation operators
controlled bloat [15]. In these experiments, the compact models were slightly
worse than the much larger ones evolved with standard crossover and mutation.

Entropy and subtree fitness analysis suggest genetic programming (GP) suc-
ceeds in finding ways to put together moderately sized fit subtrees to yield larger
trees containing few highly sensitive components with higher performance.

While it is always difficult to generalise from a limited number of examples,
we have seen for two diverse non-trivial problems the spontaneous emergence of
repeated patterns in both linear and tree based GP and with a variety genetic
operations. This leads use to tentatively suggest on problems, without tight lim-
its on tree size, depth, etc., where bloat is possible, GP will generally evolve
programs containing copious repeated patterns. Although this work is far from

training cases where replacing it changed the program’s prediction. Between 5%
and 23% of nodes in protein prediction programs have less than 0.005% impact
on all training cases. If we consider just fitness (lower dashed curves) this rises
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Source Code

Code to generate Graphviz format dot files from GP programs can be found at
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Abstract. In this paper we focus on machine-learning issues solved with
Genetic Programming (GP). Excessive code growth or bloat often hap-
pens in GP, greatly slowing down the evolution process. In [Pol03], Poli
proposed the Tarpeian Control method to reduce bloat, but possible side-
effects of this method on the generalization accuracy of GP hypotheses
remained to be tested. In particular, since Tarpeian Control puts a brake
on code growth, it could behave as a kind of Occam’s razor, promoting
shorter hypotheses more able to extend their knowledge to cases apart
from any learning steps.

To answer this question, we experiment Tarpeian Control with sym-
bolic regression. The results are contrasted, showing that it can either
increase or reduce the generalization power of GP hypotheses, depend-
ing on the problem at hand. Experiments also confirm the decrease in
size of programs. We conclude that Tarpeian Control might be useful if
carefully tuned to the problem at hand.

1 Introduction

Genetic Programming (GP) [Koz92] is an automatic method for building pro-
grams. Usually a program is represented by a variable-length structure, and GP
often produces a population of longer programs over generations but not always
fitter. This leads to the so-called bloat phenomenon [BL02] [Luk00] when GP
process drastically slows down during the evaluation step due to the increase
of size of the programs. In order to reduce GP tendency to generate lengthy
programs, Poli recently introduced the Tarpeian Control technique [Pol03], that
is based on the general schema theory [Pol01].

In [Pol03], Tarpeian Control tackles the even 10 parity problem and symbolic
regression with a 10-variate cubic polynomial target function. Fitness is propor-
tional to the sum of errors made over some training examples and the author
compares this average best fitness versus average mean size in the population.
There is no analysis of generalization accuracy, although quality of an hypothesis
is usually connected with the real error, made over all the problem instances, and
not only over the samples set. Moreover there is a large agreement on considering
that shorter hypotheses may have a stronger generalization accuracy.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 203–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Our work is an investigation to find whether or not Tarpeian Control has an
effect on generalization. We use GP and Tarpeian Control over three symbolic
regression benchmarks, to explore the potential benefits of the method. We ap-
proximate real error by testing hypotheses over a set of instances distinct from
the learning set. In the first section, we detailed the Tarpeian Control method.
Next, we focus on generalization accuracy and overfitting problem. The symbolic
regression benchmarks and the experiments results are given in Sect. 4. Then we
discuss in Sect. 5 about improvements added by Tarpeian Control to GP, before
conclusion.

2 Tarpeian Control and Bloat

Bloat is an uncontrolled code growth that slows down the GP process and thus
the fitness progress. In [Koz92], the author recommends limiting the depth of
trees at both initializing and breeding steps. But definition of such a limit de-
pends on the problem at hand. It should be based on empirical knowledge due
to prior experiments. Even with depth limits, GP often increases the size of
programs up to the upper limit. Luke studied in [Luk00] the complex dynamics
of bloat. Parametric and non parametric methods like those of [LP02] are often
justified empirically, but they may not be suitable for any given GP applications.
On the other hand, Tarpeian Control is a method based on the schema theory
established in [Pol01] and was recently proposed in [Pol03].

Tarpeian Control intends to slow down the growth of average size of programs
in a population. Estimation of the average size for the next generation with the
schema theory is closely linked to the selection probability of each program. Poli
suggests to periodically reduce the selection probability of some longer-than-
average programs. Since the selection probability directly depends on fitness
value, zeroing the fitness of some programs will greatly reduce their chances
of being selected for future generations. In this article, we denote as Tarpeian
target the subset of above-average-sized individuals that will undergo the lost in
fitness.

Following Poli’s idea, we propose in Table 1 a possible pseudo-code for im-
plementing Tarpeian Control. The Target Ratio parameter gives the percentage
of over average sized programs that are targeted at every generation. The great

Table 1. A possible Tarpeian Wrapper

function evaluation(program)
begin
IF ( (size(program) > average_pop_size)

AND (random() < target_ratio) )
THEN return( very_low_fitness );
ELSE return( fitness(program) );

end;
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advantage of such a code is that it does not require prior knowledge to estimate
any limit in size or depth. Since Tarpeian Control acts on selection probabil-
ity, no replacement step is required unlike the Death-by-size method proposed
in [PL04]. Two remarks come about the code in Table 1:

1. Tarpeian Control behaves like a random selection operator for above-average-
sized programs.

2. The number of programs in the Tarpeian target depends on the number of
above-average-sized programs in the population, and thus it may vary from
a generation to the next.

Notice that no rule is given in [Pol03] to choose a good value for Target Ratio,
that turns out as a supplementary GP parameter that needs to be tuned. In
Sect. 4, we experiment Tarpeian Control with five different ratios, to try to
obtain some hints about satisfactory values.

Poli presented Tarpeian Control as a wrapper for the evaluation step. But
wrapping often means recompiling the GP loop of an evolutionary system.
We propose an implementation for the ECJ library [Luk03], such that the ex-
isting Java code is left unchanged. Details may be found in Appendix or at
http://www-lil.univ-littoral.fr/~mahler/TarpeianPipeline/.

3 Generalization and Overfitting

Since GP tackles machine learning issues, the overfitting risk must be taken into
account: it worsens accuracy of hypotheses. Definition 1 reminds what Mitchell
calls overfitting in [Mit97].

Definition 1. Given a hypothesis space H, a hypothesis h ∈ H is said to overfit
the training data if there exists some alternative hypothesis h′ ∈ H, such that h
has smaller error than h′ over the training examples, but h′ has a smaller error
than h′ over the entire distribution of instances.

According to Def. 1, overfitting involves computing the error on the whole distri-
bution of instances from a given problem, also called the real error REr. However
in most real world cases, the real error can only be approximated: the available
instances are often split into two sets, one for training, the other one –called the
test set or validation set– for estimating REr.

Most often the result of GP is the best fitness program at the last generation.
In the following sections, REr(end) denotes the generalization error of that
particular program.

4 Experimental Procedure

We test GP over artificial benchmarks where samples are singletons {x, f(x)}
generated by a known formula f : IR2 → IR. Singletons {x, f(x)} used as test
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cases have an x value taken from a regular mesh, while random x values are used
to build the learning samples.

Three symbolic regression problems referred as SR 1, SR 2 and SR 3 are de-
fined in Table 2 and appeared in benchmarks in [Kei03], [SB01] and [TP01].
The function set is simpler than those in [Kei03] for an easier resolution of the
problem, with less test cases. Table 3 shows GP settings of our experiments. We
use Root-Mean-Squared error (RMS) defined in (1) as a standardized positive
fitness –absolute best value is 0. We record the learning error –our fitness– of
the best fitness program at every generation. We keep the generalization error
REr(end) of the best fitness program (by computing the RMS error made over
the test cases) and the average size of programs in the population, at the last
generation. To compare GP and Tarpeian Control, we conduct six experiments
for each problem: one with classical GP and five with Tarpeian Control, Target
Ratio set up to values ranging from 10% to 50% by 10% steps.

After 35 runs per experiment, we observe values from the last generation: the
average program size in the population, and the generalization error made by
the best fitness individual. Results are shown in boxplots (Figures 1 to 3). We
use statistical tests as explained in the next section. For a quick comparison, the
evolution of best fitness values (average after 35 runs) is shown in Fig. 4.

Table 2. Symbolic regression settings

Problem name SR 1 SR 2 SR 3
Target: f(x,y) xy x ∗ y + sin((x − 1)(y + 1)) x4 − x3 + y2

2 − y

Fitness Cases 100 random points 20 random points 20 random points
{(x, y), f(x, y)} (x, y) in [0,1]x[0,1] (x, y) in [-3,3]x[-3,3] (x, y) in [-3,3]x[-3,3]

Test mesh with (x, y) in mesh with (x, y) in mesh with (x, y) in
Cases [0,1]x[0,1] step 0.01 [-3,3]x[-3,3] step 0.1 [-3,3]x[-3,3] step 0.1

RMS =

√
1
n

×
∑

(p(xi, yi) − f(xi, yi))2 (1)

Root-Mean-Squared error of a program p with aim to fit a function f : IR2 → IR
over n samples.

Table 3. GP general parameters applied to GP alone, and to GP with Tarpeian Control
set with 10%, 20%, 30%, 40% and 50% ratios

Population 500 programs
Evaluations 25000 evaluations
GP Nodes Add, Sub, Mul, pDiv, ERC, X, Y

(if |den| < 10−6 then pDiv(num, den) = 1.0)
Initialization ramped half & half
Operators Mutation(5%), Crossover(85%), Reproduction(10%), Elitism
Max Depth 12
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5 Results and Discussion

5.1 Statistics and Tests Preamble

We care about the generalization error in this article, and that error is not as
regular as the learning error over generations and from one run to another. We
can see some fitness –or learning error– improvements in Figure 4 whereas it is
not so evident for generalization errors in Figures 1 to 3. Extreme generalization
errors values (REr(end)) have happened, especially for problem SR 3. So only
comparing average generalization values may lead to a wrong interpretation. We
suspect the REr(end) variable does not follow a normal law. We then test over
the 6 sets of 35 values of REr(end), the normality of that variable. The Shapiro-
Wilk test for normality helps us to decide which one of these hypotheses is the
most probable:

– H0 = “With the 35 final generalization errors we have observed for an ex-
periment, the REr(end) variable generally follows a normal law.”

– H1 = “With the 35 final generalization errors we have observed for an ex-
periment, the REr(end) variable does not generally follow a normal law.”

The result of a test is a probability (called p-value) of having taken the wrong
decision when choosing H1 (the alternative hypothesis): this leads the user to
reject the null hypothesis (H0) –or to say H1 is more probable, if the p-value
if very low. Doing that choice we take a risk we choose in advance: the alpha
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quantity. For our work we choose alpha = 0.05, meaning that we can base
decisions on a 95% confidence level.
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Fig. 4. Best Learning Error –or best fitness– evolving among generations (average value
after 35 runs)

In Tables 4 to 6, we see the p-value for Shapiro-Wilk test is very low in most
cases, which confirms the non-normality.

We then test GP versus Tarpeian Control wondering if the later is a brake
on the generalization power or if it provides more easily generalizable programs.
Thus we use the Wilcoxon test (that has no normality condition) to decide
which one of two hypotheses is the most probable. The following hypotheses are
tested:

Table 4. Does the generalization error of the best fitness program (REr(end)) follow
a normal law over Problem SR 1 ? Is REr(end) of Tarpeian Control significantly better
(or worse) than the REr(end) of GP ? After 35 runs per experiment, we use Shapiro-
Wilk test for normality of REr(end). We reject the normality hypothesis in most cases
(p-value ≤ 5%) with an alpha risk of 0.05. We compare GP results versus Tarpeian
Control with the Wilcoxon two-samples test. Since Wilcoxon p-values are often high,
Tarpeian Control with low ratios and GP REr(end) results are probably similar. We
can assert with a 95% confidence level that REr(end) of Tarpeian Control with 40%
and 50% ratios will be outperformed by that of GP, over SR 1 problem

alpha 0.05 Shapiro Wilcoxon Test: H0 = REr(end)GP ∼ REr(end)TC over SR1
experiment p.value H1: GP vs TC p.value test meaning (at alpha risk)

GP 41.493%
TC 10% ratio 9.307% lower 70.758% no difference
TC 20% ratio ≤ 10−5 lower 46.022% no difference
TC 30% ratio ≤ 10−5 lower 15.055% no difference
TC 40% ratio 0.002% lower 2.662% GP has a better REr(end) than TC
TC 50% ratio ≤ 10−5 lower 0.048% GP has a better REr(end) than TC
TC 10% ratio 9.307% greater 29.647% no difference
TC 20% ratio ≤ 10−5 greater 54.444% no difference
TC 30% ratio ≤ 10−5 greater 85.218% no difference
TC 40% ratio 0.002% greater 97.410% no difference
TC 50% ratio ≤ 10−5 greater 99.954% no difference
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Table 5. Problem SR 2: Generalization error (REr(end)) normality test and compar-
ison between REr(end) of Tarpeian Control and REr(end) of GP, after 35 runs per
experiment. Tarpeian Control with low ratios and GP REr(end) results are similar.
We can assert with a 95% confidence level that REr(end) of GP is outperformed by
Tarpeian Control with 40% and 50% ratios, over SR 2 problem

alpha 0.05 Shapiro Wilcoxon Test: H0 = REr(end)GP ∼ REr(end)TC over SR2
experiment p.value H1: GP vs TC p.value test meaning (at alpha risk)

GP ≤ 10−5

TC 10% ratio ≤ 10−5 lower 57.917% no difference
TC 20% ratio ≤ 10−5 lower 68.917% no difference
TC 30% ratio ≤ 10−5 lower 88.232% no difference
TC 40% ratio ≤ 10−5 lower 97.896% no difference
TC 50% ratio ≤ 10−5 lower 99.570% no difference
TC 10% ratio ≤ 10−5 greater 42.543% no difference
TC 20% ratio ≤ 10−5 greater 31.499% no difference
TC 30% ratio ≤ 10−5 greater 12.001% no difference
TC 40% ratio ≤ 10−5 greater 2.164% GP has a worse REr(end) than TC
TC 50% ratio ≤ 10−5 greater 0.445% GP has a worse REr(end) than TC

Table 6. Problem SR 3: Generalization error (REr(end)) normality test and compar-
ison between REr(end) of Tarpeian Control and REr(end) of GP, after 35 runs per
experiment. Tarpeian Control and GP REr(end) results are similar

alpha 0.05 Shapiro Wilcoxon Test. H0 = REr(end)GP ∼ REr(end)TC over SR3
experiment p.value H1: GP vs TC p.value test meaning (at alpha risk)

GP ≤ 10−5

TC 10% ratio ≤ 10−5 lower 21.562% no difference
TC 20% ratio ≤ 10−5 lower 16.478% no difference
TC 30% ratio ≤ 10−5 lower 26.679% no difference
TC 40% ratio ≤ 10−5 lower 71.755% no difference
TC 50% ratio ≤ 10−5 lower 73.706% no difference
TC 10% ratio ≤ 10−5 greater 78.780% no difference
TC 20% ratio ≤ 10−5 greater 83.812% no difference
TC 30% ratio ≤ 10−5 greater 73.706% no difference
TC 40% ratio ≤ 10−5 greater 28.644% no difference
TC 50% ratio ≤ 10−5 greater 26.678% no difference

– H0 = “GP and Tarpeian Control provides programs with similar REr(end).”
– H1 = “GP provides programs making a better (lower) generalization error

than Tarpeian Control.” (H1 denoted lower in Tables 4 to 6)
– H1’ = “Tarpeian Control provides programs making a better (lower) gener-

alization error than GP.” (H1 denoted greater in Tables 4 to 6,)

In Tables 4 to 6 we test H0 vs H1 in the first five lines (with H1: lower), and
then we test H0 vs H1′ in the last lines (with H1: greater).
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5.2 Results

We first observe the average size improvement at last generation over the first
problem SR 1 in Figure 1: Tarpeian Control decreases the average program size.
About generalization error, statistical tests in Table 4 show there must be no
improvement with 10% to 30% Tarpeian Ratios. The bloat control method with
40% and 50% Tarpeian Ratios even builds programs with a worse error than
that of GP programs.

When it comes to the second problem SR 2, Tarpeian Control improves av-
erage size as seen in Figure 2. In Table 5, results of statistical tests lead us to
conclude that Tarpeian Control with high ratios (40% and 50%) improves gen-
eralization error of the best fitness program when compared to GP programs.
When lower ratios are used, the difference with GP generalization is not statis-
tically significant.

Results over the third problem SR 3 again show a decrease of the average
program size in Figure 3. The generalization errors we observe do not reveal any
statistical difference between generalization errors of programs produced with
GP and with GP under Tarpeian Control, as seen in Table 6.

5.3 Overfitting

Generalization error over the first problem (SR 1) does not have extreme values
with GP, while some values above 0.5 appear with Tarpeian Control with 20%
and 30% ratios. Moreover the extreme generalization error values observed with
GP and Tarpeian Control, over problems SR 2 and SR 3 lead to high average val-
ues not shown in Figures 2 and 3. Keijzer pointed in [Kei03] that asymptotes and
singular points may appear with the protected division. So RMS errors may have
high values because of only one run giving a model with infinite asymptote close
to one case in the test set. We suppose this “evident” overfitting phenomenon
happens here. High ratios for Target Ratio do not prevent such a situation.

5.4 Tarpeian Control Effects

The Wilcoxon test shows there are some significant differences between GP alone
and GP with Tarpeian Control. The high ratios may improve REr(end) over
problem SR 2. But the same ratios worsen the results over problem SR 1. So
Tarpeian Control does not seem to have a “silver bullet” ratio: the generalization
benefits of Tarpeian Control depend on the application as well as on the Target
Ratio value. While we do not mainly focus on size in this article, Figs. 1 to 3
show the average program size in the population at the last generation is reduced
when Tarpeian Control is used. We can conclude Tarpeian Control reduces bloat.
Since Tarpeian Control uses a random selection to keep out of reproduction the
above-average-sized programs with no notice of their fitness, it looks the shorter
hypotheses left in the population may not be the one with better generalization
error. Despite its effectiveness against bloat, a blind use of Tarpeian Control
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is not recommended. However the fact that a too strong bloat control can degrade
learning is not particular to Tarpeian Control: other bloat control schemes can
also suffer from this.

6 Conclusion

We test the impact of Tarpeian Control over the generalization accuracy and
overfitting threat for GP applied to symbolic regression problems. All problems
are not equal towards Tarpeian Control. We suggest the difficulty of the problem
and the Target Ratio value for Tarpeian Control both influence its action towards
generalization accuracy.

Tarpeian Control might improve GP generalization accuracy as for problem
SR 2 with 40% and 50% ratios. It may also worsen that property as seen for
problem SR 1 with 40% and 50% ratios. As usual with bloat control methods,
Tarpeian Control tries to keep a low average program size, and, if pushed too far,
it may slow down the fitness progress too, because of the random “elimination”
of longer-than-average programs that would have a good fitness.

A blind use of Tarpeian Control is no good help for GP: there is no wild-
card setting for the Target Ratio parameter. However we have experimentaly
demonstrated that a careful tuning can improve the generalization accuracy.

These experiments raise the question whether there could be an automated
way of tuning the target ratio of Tarpeian Control, using some sort of cross
validation measures with a test set during the run.
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Appendix: Tarpeian Control Integrated in ECJ

With ECJ library [Luk03], we can modify the GP loop with the help of a pa-
rameter file, without recompiling the whole library. The pipeline class helps to
setup any complex breeding steps: it connects selection and genetic operators
together. GP individuals can be forwarded through several paths written in the
parameter file and made of different operators as illustrated in Figure 5. ECJ
evaluation uses a classical evaluated flag, so adding a new pipeline that turns
some flags to on is similar to the wrapper action proposed by Poli in [Pol03]. We
propose the following classes to implement Tarpeian Control:

– TarpeianPipeline class, that chooses a fraction of above-average-sized pro-
grams, assigns them a low fitness value and turns on their evaluated flag,

– AverageSizeStatistics class, that computes average size before breeding
step.
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pipeline

Breeding

Selection

Fig. 5. A breeding pipeline example used in ECJ for Tarpeian Control integration

After insertion of two compiled class in the library, one needs to modify the
parameter file to add the following settings:

– a new stage in the pipeline just before the evaluation step,
– a target ratio value,
– a very low fitness value,
– a supplementary statistics class.

Source code and application example may be found at:
http://www-lil.univ-littoral.fr/~mahler/TarpeianPipeline/.
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Abstract. This paper introduces the Tree-String problem for genetic
programming and related search and optimisation methods. To improve
the understanding of optimisation and search methods, we aim to capture
the complex dynamic created by the interdependencies of solution struc-
ture and content. Thus, we created an artificial domain that is amenable
for analysis, yet representative of a wide-range of real-world applications.
The Tree-String problem provides several benefits, including: the direct
control of both structure and content objectives, the production of a rich
and representative search space, the ability to create tunably difficult and
random instances and the flexibility for specialisation.

1 Introduction

The behaviour of heuristic search algorithms in artificial intelligence domains
(and other complex scenarios like operations research) is difficult to pin-down
by conventional analytical methods. More specifically, as heuristic search al-
gorithms are often stochastic in nature, they frequently result in incomplete
searches, re-sample previously-visited states, oscillate between states and be-
come trapped in local optimum. The fixed points of heuristics are usually hard
to determine, making their run time average and worst case complexity diffi-
cult to assess [1]. Consequently, the design and application of heuristic methods
for real-world problems typically proceeds by trial-and-error. However, artificial
domains can provide insight into the search abilities of various algorithms, allow-
ing future research to better apply these methods. Improving understanding of
these methods is a step toward more general search and optimisation methods.
This paper introduces a new artificial domain to improve the understanding of
solution structure and content in heuristic methods.

Many real-world problems contain two key overlapping and often conflicting
objectives: solutions must have a structure (e.g. topology), and the structure
must be “filled” with the appropriate content. Examples of these objectives can
be seen in planning, classification using decision trees and symbolic regression.
Planning typically requires hierarchical solutions that encapsulate key low-level
behaviours. An example in mobile robot planning is the issue of localisation [2]:
robots have a difficult time maintaining a good approximation of their location

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 215–226, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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during moving and sensing. Localisation is a key low-level behaviour that needs
to be carried out during a high-level strategy to allow for effective planning.
The induction of decision trees for classification constructs solution structure
simultaneously with data set features at each tree location. Higher level nodes
typically encode more important features, while lower level nodes are used to
make finer class distinctions. A classic example of such a method is Quinlan’s ID3
algorithm [3]. Finally, structure and content issues can be found in the induction
of mathematical expressions from data. In this case we look for both a functional
form and its ideal operators and coefficients.

The above examples emphasise the interdependencies between solution struc-
ture and content. As these types of problems rarely contain features that can be
optimised independent of the whole, artificial domains that allow direct manip-
ulation of structure and content also need to ensure that the richness of the in-
terdependencies is maintained. Genetic programming is the prototypical method
that must deal with solution structure and content issues during its search for
algorithmic solutions. Genetic programming handles structure and content is-
sues implicitly in its search process. While genetic programming is shown to
be competent in overcoming these conflicts in several real-world domains, it is
not known whether the way it deals with structure and content is optimal or
particularly good.

Genetic programming is an evolutionary algorithm that represents solutions
as computer programs[4]. Artificial domains are frequently used as testbed prob-
lems: the most popular being the Artificial Ant problem, the family of Boolean
problems (e.g. even-parity), and symbolic regression problems. These problems
provide testbeds that represent problems such as planning, digital design, clas-
sification and mathematical regression. However, these domains typically lack
random instance generation, the ability to easily create tunably difficult and
large instances for studying asymptotic behaviour, and a clear distinction be-
tween the issues of solution structure and content conflicts.

Previous work has highlighted the desire of the community to address these
issues. To improve solution generalisation, a random trail generator was created
for the Artificial Ant problem to complement the existing use of the the Santa
Fe trail [5]. While investigating hardness in genetic programming, tunably diffi-
cult instances of the Binomial-3 regression problem were found [6]. In this case,
genetic programming was shown to have a harder time dealing with ill-suited
constants. Also in the regression domain, tunably difficult random polynomials
were created by considering the increased precision required by an approximation
using the same search space (i.e. primitive constant ranges) [7]. This allowed the
study of code growth under varied levels of difficulty for genetic programming.
The aforementioned problems place emphasis on solution content, which is not
independent from solution structure. The following problems direct attention
back toward solution structure.

The Lid problem [8] focused only on the search for structure by using fixed
arity primitives with no meaning themselves, other than for creating tree shapes.
Instances in this problem, using a canonical representation and operator, were



The Tree-String Problem 217

tunably difficult and allowed a more direct examination of structure mechanisms
and representation issues during search. The Max problem [9, 10] and the Royal
Tree problem [11] were created to contain a singular goal state to allow analysis
of how structure acquires appropriate content. These problems define an ideal
solution that requires specific primitives at specific structure locations. Although
these problems do have intermediate reward states, they can appear to be like
needle-in-the-haystack problems that may not accurately reflect real-world prob-
lems and are somewhat limited in their flexibility for producing random instances
that are tunable. A more complex Royal-Tree-like problem was defined in [12]
that consisted of finding the correct proportions of subprograms using multi-
arity nodes. This problem, along with the ORDER and MAJORITY problems
[13, 14], investigated the relationship between content and structure, where the
latter two were mainly concerned with the occurrence and location of primitives
in solutions. Again, while these problems address particular issues in understand-
ing difficulty with the canonical representation and operators, it is less clear as
to how they are representative of real-world problems.

The Tree-String problem attempts to bridge the gap between simple and
highly-specific problems to real-world problems by providing instance tunabil-
ity, random instance generation, and a rich and complex search space, while still
being amenable to analysis. This last point, amenability to analysis, is gained
from the use of simple and clear methods and the ability to use small population
sizes while maintaining complex behaviour. The paper proceeds by first defining
the Tree-String problem. We then provide an empirical study to further demon-
strate the tunability of instances and the complex search space attained using
the Tree-String problem.

2 The Tree-String Problem Definition

The Tree-String problem was originally intended to be an artificial domain for
genetic programming, but the domain also has possible applications in other
areas of artificial intelligence. The goal of the Tree-String problem is to derive
specific structure and content elements simultaneously. Instances are defined
using a target solution consisting of a tree shape and content. Candidate solutions
are then measured for their similarity to the target solution with respect to both
tree shape and content objectives.

The Tree-String problem is defined as a tuple Π:

Π = (Ψ, Ξ, t, α, γ, δ),

where an instance is represented by a target solution t, composed of content
elements from the set Ψ and has a tree shape defined by elements from the set
Ξ. For example, binary tree structures which have internal nodes n and leaf
nodes l would have Ξ = {n, l}. The functions α and γ map the instance t to two
linear string representations, such that:

For structure: α(t) �→ Ξ∗, and for content: γ(t) �→ Ψ∗.
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Finally, the function δ provides a measure of similarity that will represent fit-
ness objectives, i.e. similarity, between two strings representing tree shape and
the similarity between two strings representing tree content. That is, given a
candidate solution tc and target solution tt:

δ(α(tt), α(tc)) �→ i ∈ ℵ, and δ(γ(tt), γ(tc)) �→ j ∈ ℵ,

where i and j represent the heuristic solution quality of tc compared to instance
tt. The fitness function of the genetic programming system, or other heuristic
search method, can then use these quality measures in a multiobjective selection
method or linear combination, where the former is used in this paper. While the
implementations of α, γ and δ can vary, to represent more closely the particulars
of a given problem domain, in this paper we propose to fix them as follows:

– α : depth-first, in-order, tree traversal for solution content,
– γ : breadth-first tree traversal for solution structure,
– δ : longest common substring (LCS).

To further illustrate the Tree-String problem, let us consider an example using
binary trees Ξ = {n, l} with content using two symbols, Ψ = {A, B}. Note that
the symbol A can either be a node or a leaf. Next, consider an instance tt which
has the following properties:

– the γ function makes a breadth-first tree traversal over the shape elements
in tt to produce γ(tt) = nnnllnlll, and

– the α function makes a depth-first tree traversal over the content of tt to
produce α(tt) = AAAABBBBB.

Now, let us imagine that a search method generated a candidate solution tc
such that γ(tc) = nnnnlllll and α(tc) = BBBAABBAA. We then compute the
measure of solution quality using δ (i.e. the longest common substring between
the components of tt and tc), where the common substrings are underlined:

– δ(α(tt), α(tc)) =LCS(nnnllnlll, nnnnlllll) = 5 and
– δ(γ(tt), γ(tc)) =LCS(AAAABBBBB, BBBAABBAA) = 4.

The elements of the candidate solution tc that contributed to solution quality
are shown below. The tree on the left shows the target tree instance tt. The
tree on the right shows the candidate solution tc. The structure components
in tc that contribute toward fitness are denoted in parentheses (e.g. (A)), and
the content components that contribute toward fitness are emphasized in bold
italics (e.g. A):

A B

AA B B

BB

A B

(A) (A)

A(B)(A)(B)

BB

tt = tc =



The Tree-String Problem 219

The above example demonstrates the conflicting nature of structure and con-
tent objectives, where the portion of the solution that contributes to the struc-
ture objective is different from the part that contributes toward the content
objective. This property is likely to make it difficult for transformation opera-
tors to effect either content or structure objectives alone, making the two features
interdependent.

The choices of breadth-first and depth-first traversals for γ and α was pur-
posefully done to exploit the hierarchical nature of solution structure and element
juxtaposition of solution content, respectively. These functions also allow the
search to focus on key features of target solutions. By features, we refer to more
general properties (e.g. for structure: balanced, sparse or bushy trees). While
an instance of the Tree-String problem would use a pre-selected structure and
content, these do not necessarily define one unique goal state that would achieve
maximal fitness. This is different from other domains like the Royal Tree or Max
problems. However, the use of the longest common substring measure guarantees
that strings are compared with their order preserved. Other measures like edit
distance would provide the same value if two strings match every-other sym-
bol or the same number of consecutive symbols. The longest common substring
function complements the flexibility in the depth/breadth-first traversals with
the more strict requirement of contiguous matching elements. It is our goal that
these definitions allow for suitably complex behaviour representing real-world
domains, but that is well-defined and amenable to analysis.

To further illustrate the Tree-String problem, we report preliminary
work toward furthering the understanding of problem difficulty in genetic
programming.

3 A Preliminary Study of Difficulty

In [15], the Tree-String problem was used to represent key properties of other
common testbed domains (Artificial Ant, Parity, Regression) to study dissimilar-
ity. A single instance of the problem using a binary tree shape and four content
symbols was randomly produced. The tree shape was selected from those found
to be more easily encountered by genetic programming [8]. The use of four sym-
bols was an approximation to the typical size of function and primitive sets used
in other testbeds. Random trials were carried out on this instance. A subsequent
analysis over the three common testbed problems suggested that their specific
behaviours were captured by the Tree-String problem. That is, the instance of
the Tree-String problem represented the general behaviour of the other problems,
see Chapter 7 of [15]. However, the full potential of the Tree-String problem was
not used in that study, which is now being extended using a range of tunable
instances. We report on that progress next.

3.1 Experimental Methodology

The genetic programming algorithm is generational with a population size of 50.
Two-parent subtree crossover is used to transform existing solutions into new
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Fig. 1. The best fitness of four runs, using the same target tree shape and four different
content strings, is plotted in the left graph. The first and last generation best fitness
values are shown in solid symbols (�, •, �, �), where the first generation of each run
is located in the upper right of the plot. The average tree size of each population is
shown in the right graph

ones. Two parent crossover selects a subtree (where non-leaf nodes are selected
90% of the time) from each parent and swaps them. All children are valid pro-
vided they are within a predefined depth limit. To select parents for crossover,
tournament selection with tournament size of 3 is used. The initial population
is created by producing random trees using the Full and Grow methods equally
between depths 2 and 4. A maximum depth for new trees is 17, and a stopping
criterion of 50 generations is used. Ignoring the small population size, the system
used here is a canonical system. A multiobjective pareto criterion is used for fit-
ness evaluation with the objectives of structure and content, using the functions
described in Section 2. A pareto optimal, or best fit solution is one which is
better in at least one objective and no worse in the other compared to the rest
of the population.

3.2 Single Structure, Multiple Content Behaviour

Initially, we look at the behaviour of four runs with the above system using one
pre-selected tree shape (tree shape #2 in Figure 2 with depth 9 and 51 nodes)
with four randomly created content strings (each with an increasing number
of symbols, from 1 to 4). Figure 1 shows the evolution of the best fitness in
each generation for each of the four runs. Here the fitness objectives report the
size of the target strings (51 symbols) minus the longest common substring: a
minimisation problem.

In Figure 1, the left graph shows that the more symbols in the content set
Ψ , the more the search process optimises for tree shape. With one symbol in
the content set, the search process can easily find a solution with the correct
content (the size of the target tree in this case). However, as the number of
content symbols is increased to four, the search process makes very little progress
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improving the content objective, but focuses instead on the tree shape. The right
graph of Figure 1 shows the evolution of the average solution size in each of the
four runs. We can see that at generation 10, the easiest instance (Ψ = A), had
the largest average tree size. However, the average size in this instance also
reduced the most toward the end of the run when the structure objective is
being improved. However, in the harder instances (3 and 4 symbols in Ψ) a
larger average tree size is produced at the end of the run. The behaviour of more
difficult instances producing larger solutions is similar to previous results for
tunably difficult instance in genetic programming [6, 7].

This typical instance demonstrates that the search for both structure and
content are conflicting in the Tree-String problem. While a population of size
of only 50 individuals was used, the problem induces a complex search space.
The remainder of the paper describes a much larger study of hardness in genetic
programming, which is the subject of our future research. We show the generation
of tunable instances and how genetic programming has a more difficult time
improving both objectives when either one becomes more difficult.

3.3 Tree-String Instances

We create instances in the Tree-String problem with an increasing number of
nodes and increasing content alphabet size. These two features, tree size and
content size, are likely to lead to increased difficulty for the genetic programming
algorithm. To avoid the pitfall of selecting tree shapes which are in themselves
difficult for genetic programming, and duplicating aspects of [8], we will use the
method of creating tree shapes from [8] but select shapes that are the most
commonly visited (also seen in other empirical studies in [10]). We are then
ignoring two other ways of tuning instances: fixing content and tree size and
choosing more difficult shapes – or – for a particular tree shape and content,
using different generation of target content (e.g. non-random ways).

To create the set of tree shapes on which to place random content, forming an
instance, we generate a tree shape using the iterative tree growth method from
[8], similar to the hill-climbing method in [16]. The method iteratively adds two
child nodes to a probabilistically chosen leaf node, starting with the root. The
probability of selecting leaf nodes can be altered to restrict trees to be less than
a particular depth. We produce 500 random trees with depths between 5 and
15, and with 15 and 272 nodes. We first randomly pick a tree size from the
latter range. A tree shape is then grown with a limit of depth 15. Figure 2 shows
the distribution of the depth and size of the 500 random trees. We select a tree
shape from depths 7, 9, 11, and 13 that are close to the mean size for that depth,
ensuring that tree shape alone will not effect difficulty. These trees are shown in
Figure 2 using a circular lattice visualisation1 [8]. The root node lies at the very
center, and each two child nodes lie at the intersection of subsequent lines.

The second step to define our instances is selecting which symbols from Ψ
to use. We will create four random strings. The first using one symbol from Ψ ,

1 Code to produce this visualisation is available at http://www.cs.nott.ac.uk/∼ smg/
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the second two, and so on. That is, one random string has |Ψ | = 1, another
|Ψ | = 2, another |Ψ | = 3, and the last |Ψ | = 4. Each random string will be the
same size as the tree shape under consideration - producing 4×4 instances. The
genetic programming system will then use the same content set as used to create
the current instance under consideration. That is, genetic programming will not
need to address the additional potential problem of filtering out unnecessary
elements from the content set.

The ability of genetic programming to search for tree content as well as
tree shape can now be tested. By using tree shapes near the median of the
distribution, we can assume with some confidence that they represent those
shapes which genetic programming should be able to find more easily [8, 10].
However, by increasing the size of the instances, we hope to increase the difficulty
of finding the correct tree shape. Also, by generating four random strings for
each shape with an increasing content set size, we expect to control difficulty for
finding correct content.

3.4 Experimental Study

The genetic programming method is run for 30 runs on each instance, creat-
ing 480 runs. We report the improvement of solution quality as the total size
of the tree minus the longest common substring for structure and the total
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Fig. 3. The improvement of the content and structure objectives. Improvement is nor-
malised by instance (target tree) size. The left column groups runs according to the
size of the content set Ψ , increasing complexity from top to bottom. The right column
groups runs according to the target tree shape, increasing size from top to bottom
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size minus the longest common substring for content. These values are then
normalised by dividing them by the target tree size. We report the best (pareto
optimal) candidate solution quality found in each population during the run. A
similar study using a linear combination of the structure and content objectives
(instead of a pareto criterion) was not seen to be significantly different.

We first examine the fitness distributions for the runs with different sizes of
the set Ψ . The left column of Figure 3 shows the best fitness in each generation of
each of the runs. From top to bottom in the left column of Figure 3 the alphabet
Ψ size is increased. We can see how it is initially very easy to find good content
(top). However, as Ψ size increases to 4 (bottom), the search gradually shifts
toward improving tree shape. Thus, over all the random instances consisting of
different target tree sizes, shapes and depths, increasing alphabet size increases
the difficulty in the algorithm, causing the search to shift from improving content
toward improving structure.

We now examine the effect of target tree size and fitness improvement for the
same experiments, but now the instances are grouped by target tree size from
smallest to largest. Again, we normalise both fitness objectives by the size of the
target tree. The right column of Figure 3 shows the best fitness improvement in
both objectives as target tree size increases (from top to bottom). Note that the
amount of computation given to all experiments is equal, i.e. the same population
size and generations. With a content alphabet of size 1 (as seen in the left
column of this figure), genetic programming is still capable of finding trees large
enough to match the target content string, seen with all tree sizes. However, the
algorithm is unable to find similar improvements with regard to structure. That
is, overall improvement is not in proportion to size when content complexity is
greater than one symbol.

The empirical results demonstrate the creation of random instances for the
Tree-String problem that are tunably difficult. Instance difficulty was achieved
by increasing either the content complexity or the size of the size complexity of
the instance. When one aspect of the instance (content or size) is easy enough
(i.e. a content alphabet of size one or small tree shape), genetic programming can
improve solution quality. Adding complexity to one objective, however, greatly
effects the ability to improve that objective, and sometimes both objectives. More
content complexity (more symbols in the content set) makes it harder to improve
the content objective (left column of Figure 3), and larger tree shapes make it
harder to improve either objective in proportion to the size (right column of
Figure 3). A similar behaviour was also seen in the context of the multiobjective
optimisation of size and quality [17], where it was easier to reduce tree size than
improve quality. Runs converged toward improving the easier objective of size
rather than equally improving size and quality simultaneously.

4 Conclusions

Analytical work for genetic programming has always encountered difficulty due
to large population sizes, variable sized solutions and expensive fitness evalu-
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ation. The Tree-String problem offers the ability to simulate complex solution
behaviour (content and structure dependencies) using variable length strings.
That is, we do not need to compile new individuals or use precompiled elements
for calculating fitness. All the functions used to convert Tree-String elements to
strings representing structural and content features are generic (i.e. breadth-first,
depth-first tree traversals and longest common substring). We are currently de-
veloping a very simple genetic programming system for the Tree-String problem
that incorporates efficiency improvements described in [18] for the iTree data
structure. It is our goal that the Tree-String problem allows for efficient research
to take place on a complex problem, ultimately making significant contributions
to the scientific community. We feel that for such a problem to be useful, it must
be relevant to realistic genetic programming applications. It is for this reason
that the Tree-String problem requires explicit focus on solution structure and
content.

Capturing elements of real-world problems in artificial domains can be dif-
ficult. Artificial domains are intended to allow precise and efficient analytical
work but often focus on singular aspects of solutions (structure or content).
Additionally, testbed domains typically handle properties of solution structure
and content implicitly, making it difficult to glean their effects. The Tree-String
problem is proposed to make a stronger bridge between testbed functions and
real-world applications. Toward this goal, we have seen the following properties
of the Tree-String problem:

1. Control over both structure and content issues,
2. Clear and simple methods defining fitness and representation,
3. A complex and behaviour-rich search space,
4. The ability to create tunably difficult and random instances,
5. Substantial room for specialisation toward specific research goals.

Our future work is examining problem hardness in genetic programming. We are
also examining variants of the Tree-String problem to carry-out efficient algorith-
mic analysis with respect to other problems. While we have hypothesised that
the Tree-String problem is representative of other genetic programming domains,
our current work is attempting to create mappings between these domains or
between important domain features.
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Abstract. In this paper a new method is presented to solve a series
of multiclass object classification problems using Genetic Programming
(GP). All component two-class subproblems of the multiclass problem
are solved in a single run, using a multi-objective fitness function. Prob-
abilistic methods are used, with each evolved program required to solve
only one subproblem. Programs gain a fitness related to their rank at the
subproblem that they solve best. The new method is compared with two
other GP based methods on four multiclass object classification problems
of varying difficulty. The new method outperforms the other methods sig-
nificantly in terms of both test classification accuracy and training time
at the best validation performance in almost all experiments.

1 Introduction

Object classification problems abound in daily life, and a computer system that
can solve object classification problems is very desirable. The advantages of
using a computer to solve such problems, over a human expert, include lower
cost, higher speed and higher reliability in the face of large throughput. However,
building automatic computer systems for object and image classification tasks
that are reliable and can achieve desirable performance is very difficult.

GP research has considered a variety of kinds of evolved program representa-
tions for classification tasks, including decision tree classifiers and classification
rule sets [1, 2, 3]. Recently, a new form of classifier representation – numeric ex-
pression classifiers – has been developed using GP [4, 5, 6, 7]. This form has been
successfully applied to real world classification problems such as detecting and
recognising particular classes of objects in images [5, 6, 8], demonstrating the
potential of GP as a general method for classification problems.

The output of a numeric expression classifier is a single numeric value (the
program output), and problems arise when attempting to convert this value into
a class label. For binary problems, one reasonable solution is to assign one class if
the program output is negative, and the other otherwise [4, 5, 6, 9]. However, the
problem is much more complicated when three or more classes exist (multiclass
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problems), as multiple boundaries need to be found to divide the numeric space
into three or more class regions.

Statically-assigned class boundary methods have been used widely, but are
seen to unnecessarily constrain programs, leading to long search time and low
final accuracy [4, 7]. In previous research a probabilistic method has been used to
avoid the setting of class boundaries [10], however this method still constrains
each program to solve the entire problem, even when the problem has many
classes.

To avoid the above problems, the multiclass classification task may be de-
composed into many binary tasks [4]. However, in the past each binary task
requires a separate GP evolution, leading to a long total time for evolution even
though each evolution is quite short [4].

The goal of this paper is to construct a method to decompose a multiclass
classification problem into a number of two-class (binary) subproblems, solve all
these subproblems in a single GP run, then combine the binary subproblems
to solve the whole multiclass problem. A secondary goal is to evaluate the new
method on a variety of problems of varying difficulty, comparing it with two
other GP based methods.

This paper is organized as follows. In section 2 two existing fitness functions
for comparison with the new method are presented. In section 3 the new method
is described. In section 4 the data sets and settings used for experiments are
given. In section 5 the results of experiments are presented and discussed. In
section 6 conclusions are drawn, and some directions are given for future research.

2 Two Existing Fitness Functions

The new approach described in this paper will be compared with two existing
fitness functions: Program Classification Map (PCM) [7, 11] and Probabilistic
Multiclass (PM) [10].

2.1 Program Classification Map

In PCM, the floating-point output of a program is converted directly into a class
label, depending on the numeric region it falls into. Thresholds are set at even
spacing (one unit) on the number line from some negative number to the same
positive number. For an N class problem, there will be N − 1 thresholds. The
classes are assigned to the regions before, between and after the thresholds, in
order of magnitude. For example, figure 1 shows the numeric regions of a five
class problem. The fitness of a program is found by subtracting the training set
accuracy from 100%.

2.2 Probabilistic Model of Program Output

Based on the feature values of the training examples for a particular class, the
mean and standard deviation of the program output values for that class can
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Fig. 1. Program Classification Map (PCM) for a five-class problem

be calculated. In this way, we can attain the mean and standard deviation for
each class. These program statistics are compared in order to get a fitness value
indicating how well the program separates the classes.

Probabilistic Binary. Figure 2 shows three examples of normal curves that
may be gained by modeling three program’s results on the training examples in
the binary classification problems. In the figure, the leftmost program’s normal
curves are substantially “overlapped”, so there is a high probability of misclassi-
fication. The rightmost program’s normal curves are well “separated”, so there is
a low probability of misclassification and this program represent a good classifier.

Class 2

(a)

Class 1 Class 2

(b)

Class 2
m

m

Class 1

(c)

Class 1

Fig. 2. Example normal distributions for a binary problem. (a) a bad discerner between
the two classes, (b) an acceptable discerner, (c) a good discerner

In the binary problem case, equation 1 is used to determine the distribution
distance (d) between the classes in standard deviations.

d = 2 × |μ1 − μ2|
σ1 + σ2

(1)

where μi and σi are the mean and standard deviation of the program outputs for
class i in the training set. For programs that distinguish between the two classes
well, the distance d will be large. In such a case, the probability of misclassi-
fication would be small as the distribution overlap occurs at a high standard
deviation.

To be consistent with the PCM method, we convert the distribution distance
measure d to a standardised fitness measure ds, as shown in equation 2, which
indicates the misclassification of a genetic program in the binary classification
problem.

ds =
1

1 + d
(2)

Probabilistic Multiclass (PM). In the PM method, the fitness of a program
for the multiclass (N-class) classification problem is defined as the sum of the
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standardised distribution distance of all binary classification problems, as shown
below:

Fitness(PM) =
C2

N∑
i=1

dsi (3)

For instance, for a four class problem there are C2
4 = 6 binary classification

subproblems. For each subproblem, we can calculate its ds value. The fitness of
the whole four class problem is the sum of all the six ds values.

3 Communal Binary Decomposition

For presentation convenience, the new approach developed in this paper is called
Communal Binary Decomposition (CBD).

CBD also uses a probabilistic method to model the outputs of programs, as
PM does. However, while a solution program in PM must separate the distribu-
tions of all classes in the multiclass problem, in CBD each program only needs
to separate two classes. In CBD the program’s fitness depends on its perfor-
mance at separating just one pair of classes for a particular binary classification
subproblem.

The separation of the problem into many two-class (binary) problems is sim-
ilar to Binary Decomposition [4]. However in CBD all the problems are solved in
one evolution using a multi-objective fitness function, which is why it is called
“communal”.

3.1 Getting Fitness

In each generation, the following steps are taken to calculate the fitness of a
program:

1. For each pair of classes in a binary classification problem, calculate and store
the separation distance d (equation 1).

2. For each pair of classes in a binary classification problem, sort the programs
in the population based on the separation distance values in a descending
order.

3. Calculate the fitness of each program based on its position in the list of
programs where the program achieves the best performance (position) in all
the binary classification problems.

Figure 3 shows an example of using this method to evaluate the fitness of
four programs in a three class problem.

The main table in the figure lists the separation distances of all programs on
all binary problems. Below the main table, the entries for each binary problem
are sorted from best program to worst. For example, for the binary problem of
separating class one from class two, program D was best at a distance of 2.01, so
it is first in the list. Then each program is assigned a fitness to the position in the
sorted list where it achieves the best performance (occurs earliest, as indicated
by arrows).
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D was first in (1 vs 2)
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1.02
1.67
0.56
2.63

Sorted Lists

Program Seperations for Class Pairs

Arrows indicate best positions

1
2
3
1

FitnessesBest results

A was first in (1 vs 3)
B was second in (2 vs 3)
C was third in (1 vs 2)

Fig. 3. Evaluating the fitness of four example programs in a three class system

With this fitness function, each program is encouraged to excel in separating
one pair of classes, although the program is free to do so to any pair it chooses.
Any program is free to separate more than one pair of classes, but only the pair
where the program performs the best is used to calculate the fitness.

3.2 Solving the Multiclass Problem

In order that the multiclass problem is solved, a group of expert programs is
assembled during evolution. An expert program is stored for each of the binary
problems.

In each generation, for each binary problem, the program in the population
that has the best separation is compared to the expert for the binary problem.
If it is found to be better than the expert, it replaces the expert.

If the standardised distribution distance value ds (equation 2) for the (possi-
bly new) expert program falls below (is better than) a parameter solveAt, then
the binary problem is marked as solved. A solved binary problem differs from an
unsolved problem in that programs are no longer encouraged to solve it. Solved
binary problems are not included in the calculation of the best position for each
program (discussed in section 3.1). When all binary problems have been solved,
the problem is considered solved.

Note that the best program at separating classes of a solved binary problem
is still found, for comparison with the current expert at the problem. As such,
experts of solved binary problems can still be replaced and improved upon.

3.3 Combining CBD Expert Programs to Predict Class

To find the accuracy of the system on the test set or validation set, the experts
gained for all the binary problems are combined to predict the class of each
object image in the test set or validation set.

Equation 4 is used to find the probability density at points in the normal
curve.

Pe,c,o =
e
(
−(rese,o−μe,c)2

2σ2
e,c

)

σe,c

√
2π

(4)
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where Pe,c,o is the probability density calculated for the expert program e using
the normal distribution for class c and features for object o. rese,o is the output
result of evaluating expert program e on object o. μe,c and σe,c are the mean and
standard deviation, respectively, of the output results of the expert program e
for all training object examples for class c.

Using the function in equation 4, equation 5 shows a probability value of ob-
ject o belonging to class a in the class pair (a, b) (binary classification problem),
and equation 6 shows the same value expressed in a different form.

Pe(a,b),a,o

Pe(a,b),a,o + Pe(a,b),b,o
= Pr(cls = a|cls ∈ {a, b}) (5)

=
Pr(cls = a ∩ (cls ∈ {a, b}))

Pr(cls ∈ {a, b})

=
Pr(cls = a)

Pr(cls ∈ {a, b})
=

Pr(cls = a)
Pr(cls = a) + Pr(cls = b)

(6)

where the expert for discerning class a from class b is called e(a, b) and Pr(x) is
the probability that the condition x is true.

To obtain the probability of any object in the test set belonging to class
c with the expert programs in a multiclass (N-class) problem, we consider the
inverted sum of all binary classification subproblems associated with class c that
the multiclass problem can be decomposed into:

c−1∑
i=1

1
Pr(cls = c|cls ∈ {i, c})

+
N∑

j=c+1

1
Pr(cls = c|cls ∈ {c, j})

=
c−1∑
i=1

Pr(cls = i) + Pr(cls = c)
Pr(cls = c)

+
N∑

j=c+1

Pr(cls = c) + Pr(cls = j)
Pr(cls = c)

=
1 + (N − 2) · Pr(cls = c)

Pr(cls = c)
= N − 2 +

1
Pr(cls = c)

Note that the sum of the probability of a particular object belonging to each

of all the possible classes is equal to one, i.e.
N∑

i=1
Pr(cls = i) = 1.

Accordingly, the probability of an object that the GP system classifies to
class c is Pr(cls = c) or pc:

pc =
1∑c−1

i=1
Pr(cls=i)+Pr(cls=c)

Pr(cls=c) +
∑N

j=c+1
Pr(cls=c)+Pr(cls=j)

Pr(cls=c) − (N − 2)

=
1∑c−1

i=1
1

Pr(cls=c|cls∈{i,c}) +
∑N

j=c+1
1

Pr(cls=c|cls∈{c,j}) − (N − 2)
(7)

Based on equations 7 and 5, we can calculate the probability of an object
being of any class. The class with the highest probability for the object is used
as the class the GP system classified into.
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4 Data Sets and Evolutionary Settings

4.1 Image Data Sets

We used four data sets providing object classification problems of increasing
difficulty in the experiments. Example images are shown in figure 4.

(a) (b) (c)

(d)

Fig. 4. Dataset examples: (a) Shapes, (b) 3-class coins, (c) 5-class coins, and (d) Faces

The first set of images (figure 4a) was generated to give well defined objects
against a relatively clean background. The pixels of the objects were produced
using a Gaussian generator with different means and variances for each class.
Three types of shape were drawn against the light grey background: black circles,
dark grey squares and light circles. The three-class shape data set was created
by cutting out 720 objects (also called cutouts), from these images.

The second and the third sets of images (figure 4b and 4c) contain scanned
New Zealand coins. The coins were located in different places with different
orientations and appeared in different sides (head and tail). In addition, the
background was quite cluttered. We need to distinguish different coins, with
different sides, from the background. Two data sets were created from these
images, one with three classes and one with five classes. The three-class coin
data set has 576 cutouts that are either 10c heads, 10c tails or background.
The five-class coin data set has 480 cutouts that are either 5c heads, 5c tails,
10c heads, 10c tails or background. The classification problem in the coin data
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sets is much harder than that of the shape data set. The problem is very hard
due to the cluttered background and similarity of the classes as well as the low
resolution of images.

The fourth data set consists of 40 images of four human faces (figure 4d)
taken at different times, varying lighting slightly, with different expressions
(open/closed eyes, smiling/non-smiling) and facial details (glasses/no-glasses).
These images were collected from the first four directories of the ORL face
database [12]. All the images were taken against a dark homogeneous back-
ground with limited orientations. The task here is to distinguish those faces into
the four different people.

For the shape and the coin data sets, the objects were equally split into
three separate data sets: one third for the training set used directly for learning
the genetic program classifiers, one third for the validation set for controlling
overfitting, and one third for the test set for measuring the performance of the
learned program classifiers. For the faces data set, due to the small number of
images, the standard ten-fold cross validation technique was applied.

4.2 GP Environment and Settings

In all experiments, programs used the tree-structured representation with all
nodes returning single, floating-point numbers. Reproduction, mutation and
crossover were used as the genetic operators. Initial programs and the subtrees
created in the mutation operator were generated by the half-and-half method.
A tournament selection mechanism was used with a tournament size of three.

The GP parameters used in experiments are shown in table 1.

Table 1. Parameters used for GP training for the three data sets

Parameter Names Shapes coins faces Parameter Names Shapes coins faces
population-size 500 500 500 reproduction-rate 10% 10% 10%
initial-max-depth 5 5 5 cross-rate 60% 60% 60%
max-depth 7 7 7 mutation-rate 30% 30% 30%
max-generations 40 40 40 cross-term 30% 30% 30%
object-size 16×16 70×70 92×112 cross-func 70% 70% 70%

In this approach, the GP search was terminated when one of the following
events occurred:
– The number of generations exceeds max-generations.
– The training problem was considered solved.

4.3 Terminals and Functions

Terminals. Two forms of terminals were used: numeric and feature terminals.
Each numeric terminal returned a single constant value, set initially by randomly
sampling a standard normal distribution.
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Each feature terminal returned the value of a particular input feature. It is the
feature terminals that form the inputs of the GP system from the environment.
The features used are simple pixel-statistics derived from the object image. Two
statistics (mean and standard deviation) for each of two regions (whole square
cutout and centre square of half side-length) were used, making four features
altogether.

Functions. Five functions were used, including addition, subtraction, multipli-
cation, protected division and a continuous conditional (soft if) function. Each
of the first four functions took two arguments, and applied simple mathematical
operations. The soft if function returned the value r in equation 8. This allowed
either the second or third argument to control the output, depending on the
value of the first argument.

r =
a2

1 + e2a1
+

a3

1 + e−2a1
(8)

where r is the output of the soft if, and ai is the value of the i’th argument.

5 Results and Discussion

This section presents a series of results of the new method on the four object
classification data sets. These results are compared with those for the PCM and
PM methods.

Throughout evolution, the accuracy of the system on the validation set was
monitored. The accuracy shown in results (except those for the Face data set)
is the accuracy of the system on the test set, at the point of best validation
set accuracy. This method is employed to avoid overfitting. For the Face data
set, ten-fold cross-validation (TFCV) was used, and the accuracy reported is
the maximum test set accuracy, using TFCV, found during evolution. The “run
time” reported is the total time required for evolution.

For all parameter settings, the GP process was run 50 times with differ-
ent random seeds. The mean results were presented, with standard deviation
included for accuracy results.

5.1 Overall Results

Table 2 shows a comparison of the best classification results obtained by both
the new method (CBD) and the other approaches (PCM and PM) using the
same sets of features, functions and parameters. The solveAt parameter to the
new method was set to 0.01.

On the shape and the first coin data set, all the three GP methods achieved
good results, reflecting the fact that the classification problems are relatively
easy in these two data sets. However, the new method achieved perfect test
set accuracy for all 50 runs of evolution for the shape data set where the other
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two existing GP methods did not. On both classification tasks, the new CBD
method achieved the best classification accuracy. On the very hard five-class coin
problem, the new method gained almost ideal performance (99.19% accuracy),
while the PM method achieved 95.92% and PCM only 73.26%. For the face data
set, new method achieved comparable results with the PM method, but greatly
outperformed the PCM method.

The number of generations required to gain maximum validation set accuracy
was very small with the new method. For the shape and three-class coin data
sets, this number was well below one for the new method, indicating that the
problems could be solved in the initial generation at most of the time due to the
good fitness measure in the new CBD method.

The new method normally took a longer time to solve the training problem
and terminate the run than the other methods. However, it often found a peak in
the validation set accuracy in a shorter time than the PM method. It is expected
that the new method would outperform the other methods if only a very limited
time or number of generations was allowed for the run.

Table 2. Comparison between PCM, PM and CBD

Dataset Classes Method Gens. at best Time to Best Run Time Test Acc. at
Val. Acc. (s) Val. Acc. (s) (s) Best Val. Acc. (%)

PCM 3.02 0.41 0.45 99.82 ± 0.43
Shapes 3 PM 0.92 0.52 0.53 99.97 ± 0.14

CBD 0.04 0.53 22.70 100.00 ± 0.00
PCM 8.74 0.94 1.29 99.44 ± 0.88

3 PM 1.18 0.50 0.53 99.91 ± 0.27
Coins CBD 0.06 0.44 25.00 99.97 ± 0.12

PCM 31.32 3.60 4.72 73.26 ± 7.45
5 PM 28.82 9.85 14.23 95.92 ± 2.40

CBD 5.06 2.82 21.69 99.19 ± 0.82
PCM 5.91 0.22 1.75 81.65 ± 13.49

Faces 4 PM 5.63 0.44 2.78 97.75 ± 7.15
CBD 2.12 0.36 5.93 96.45 ± 8.73

5.2 Different Problem Solving Criteria in the New Approach

Table 3 shows a comparison of the results on the four data sets using different
values for the solveAt parameter in the new method. The solveAt parameter
indicates the separation measure value at which to consider a binary problem
solved. Five values were examined for solveAt over the four data sets.

Values smaller than 0.01 showed no considerable improvement in accuracy,
but increased run time. Values larger than 0.01 degraded performance slightly,
but did decrease the time per run. From these experiments, a value of 0.01 for
the solveAt parameter seems a good starting point.
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Table 3. Comparison between values of the solveAt threshold, in CBD

Dataset Classes solveAt Gens. at best Time to Best Run Time Test Acc. at Best
Val. Acc. (s) Val. Acc. (s) (s) Val. Acc. (%)

0.003 0.04 0.53 28.24 100.00 ± 0.00
0.010 0.04 0.53 22.70 100.00 ± 0.00

Shapes 3 0.030 0.02 0.52 4.46 100.00 ± 0.00
0.100 0.00 0.51 0.51 99.39 ± 4.26
0.300 0.00 0.50 0.51 99.39 ± 4.26
0.003 0.06 0.44 24.82 99.97 ± 0.12
0.010 0.06 0.44 25.00 99.97 ± 0.12

3 0.030 0.06 0.44 23.90 99.97 ± 0.12
0.100 0.04 0.43 4.23 99.97 ± 0.12

Coins 0.300 0.00 0.41 0.41 99.96 ± 0.14
0.003 5.72 3.16 21.99 99.16 ± 0.87
0.010 5.06 2.82 21.69 99.19 ± 0.82

5 0.030 5.22 2.88 21.32 99.17 ± 0.98
0.100 3.78 2.08 21.69 99.29 ± 0.91
0.300 0.70 0.65 1.71 99.04 ± 1.02
0.003 2.12 0.36 5.93 96.45 ± 8.73
0.010 2.12 0.36 5.93 96.45 ± 8.73

Faces 4 0.030 2.07 0.35 5.91 96.40 ± 8.78
0.100 1.96 0.33 5.93 96.15 ± 9.02
0.300 1.55 0.28 4.86 95.30 ± 9.77

6 Conclusions

The goal of this paper was to construct a method to decompose a multiclass
classification problem into multiple two-class subproblems, solve all these sub-
problems in a single GP run, then combine the subproblems to solve the multi-
class problem. This goal was achieved in the CBD method, which allows many
component binary classification problems to be solved in one run of the GP
process.

A secondary goal was to evaluate the new method on a variety of problems of
varying difficulty, comparing it with two other methods. This goal was achieved
by a series of experiments comparing the new method with a basic GP approach
(PCM) and a previous probabilistic GP method (PM). The new method was
seen to outperform both methods when applied to most data sets.

Like many existing GP approaches for multiclass classification problems, the
new method can solve a problem of any number of classes in a single GP run.
However, unlike most of these approaches, each evolved program produced in
the new method is not required to solve the entire multiclass problem. Instead,
each program only needs to solve a single component binary subproblem to gain
good fitness. The fitness function gives each program a fitness related to its best
performance for a binary subproblem.
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A mathematically derived method was found to determine the most probable
class of a test example, based on the results of a number of expert programs for
solving those binary classification subproblems.

The new method requires a parameter, which specifies when a component
problem is considered solved. While it does not appear to have a reliable way to
obtain a good value for this parameter for different problems which usually needs
empirical search, our experiments suggest that 0.01 is a good starting point.

Although developed for multiclass object classification problems, this ap-
proach is expected to be able to be applied to general classification problems.

In future work, we will investigate the new method on other general clas-
sification problems and compare the performance with other long established
methods such as decision trees and neural networks.
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Abstract. Repeating code sequences are found in both artificial and natural ge-
nomes as an emergent phenomenon.  These patterns are of interest in research-
ing both how evolution reuses code segments to create superior individuals and 
whether building blocks are used in the formation of repeated sequences.  We 
describe a GP representation using a special type of crossover that is more con-
ducive to the formation of repeated sequences than traditional GP.  We then es-
tablish that the repeated sequence phenomenon in the implementation displays 
traits of building blocks by establishing associated regularity of genotype and 
phenotype elements.   

1   Introduction 

The presence of code bloat has been a widely studied phenomenon in the genetic pro-
gramming (GP) field [1].  Another potentially important phenomenon that is not as 
thoroughly investigated is the emergence of repeating sequences of instructions found 
to be present in individuals evolved using linear genetic programming (L-GP).  In a 
recent paper [2], Langdon and Banzhaf discovered that hierarchical repeating se-
quences are evolved by L-GP in linear time series prediction programs.  Langdon and 
Banzhaf also suggest that the length of the programs (bloat) appears to be more im-
portant than crossover in establishing repetitive sequences for their analysis of the 
Mackey-Glass benchmark using two types of 2 point crossover and headless chicken 
crossover. 

Langdon and Banzhaf [2] raise a number of interesting questions in their paper, in-
cluding whether or not (1) there are new representations of GP that might be better 
able to generate repeated sequences and (2) building blocks are involved in the forma-
tion of repeating sequences.  We present an answer to (1) by using a particular varia-
tion of the crossover operator.  We also construct an argument that the repeating se-
quences in this implementation constitute building blocks, thus providing a possible 
response to (2).  We thus present an implementation that is particularly good at form-
ing repeating sequences using building blocks.  To investigate the nature of repeating 
sequences, we apply L-GP to the San Mateo version of the Artificial Ant Trail [3, 
chapter 12].  This provides a difficult benchmark problem that is also sufficiently 
straightforward to establish relationships between cause (instruction execution) and 
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effect (efficient food eating strategy), for fitness increases as the instruction pointer 
moves from beginning to end of an individual’s genome.   

Two L-GP implementations, each with a different crossover operator, are then ap-
plied to this problem.  The repeated sequences resulting from a fixed-size (FS) cross-
over operator are compared to the sequences resulting from a variable size (VS) 
crossover operator, showing the FS crossover operator to be superior to the VS in re-
peated sequence creation.  Code regularity in solutions is thus established, and an 
analysis of fitness accumulation resulting from the execution of particular sections of 
the genome is then completed.  The result is that both a code regularity (repeating 
code patterns) and an associated regularity in fitness accumulation (result of code 
regularity) are established for the FS implementation.  In the end, the combination of 
code regularity and performance of genome sections points to the existence of build-
ing blocks within a GP implementation that uses the crossover operator as the means 
of creating the repeating sequences within individuals of a fixed size.  However, this 
finding does not mean that bloat is unable to contribute to sequence formation more 
so than crossover in implementations where fixed length individuals are not used.    
Therefore, the sequence formation due to bloat over crossover, as expected by Landon 
and Banzhaf, may still be realized in other implementations.   

In Section 2 of the paper, we outline the Linear GP implementation of the San 
Mateo Trail.  Section 3 describes the specifics of the operators used in the two forms 
of linear GP that are applied to the problem.  Section 4 examines the distribution of 
instruction sequences across the two forms of linear GP, establishing the presence of 
repeating patterns (code regularity) in the genotype.  Section 5 analyses the nature of 
the solutions found in terms of fitness gain per instruction section of the genome and 
establishes regularity in the form of the solutions (phenotype) for the FS implementa-
tion.  Section 6 concludes the paper. 

2   San Mateo Trail with Linear GP 

Koza described several versions of the Ant Trail problem of varying degrees of diffi-
culty [4]. Moreover, it has been shown that specific instances of the problem represent 
deceptive problems for fixed length (tree) GP [5], [6, Chapter 9]. The instance used 
for our research is the San Mateo Trail, proposed by Koza in 1994, and represents the 
most difficult version of the problem on account of the additional discontinuities, ex-
tended length and non-toroidal nature of the grid on which the trail is laid [3, chapter 
12]. Specifically, the trail consists of a series of nine 13 × 13 grids on which 9 to 12 
food items are distributed in discontinuous sequences of various patterns. Should an 
ant attempt to wander off the edge of a grid, it re-appears on the next grid at the de-
fault start position (center of the first row pointing south). Likewise, should an ant 
successfully eat all the food items on a grid, it is then repositioned on the next grid at 
the default start position. In total there are 96 items of food. Table 1 summarizes the 
key features of the problem [3]. The ant is capable of moving right, left, or ahead in 
the direction it is facing, with a limit of 120 RIGHT or LEFT turns and 80 
MOVE_AHEADs. 
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Table 1. Table of San Mateo Trail Problem Specifics using Linear Genetic Programming  

Experiment Parameter Definition or Acceptable Values 
Objective Find program to control artificial ant such that all 96 

food items are located. 
Terminal set (right), (left), (move) 
Functional set IF-FOOD-AHEAD 
Fitness cases 9 fitness cases, each with 13 × 13 grid with 9-12 

food items 
Raw fitness Sum of food eaten over the nine fitness cases within 

120 RIGHT/LEFT or 80 MOVE_AHEADs. 
Standardized fitness Total food (96) less the raw fitness 
Hits As per raw fitness 
Wrapper None 
Success predicate Program with the maximum number of hits 

 

The linearly-structured GP employed in this case uses the instruction format illus-
trated in Figure 1 for a four register ant.  Note that the first bit in the instructions (the 
mode bit) switches between a “load register” instruction, in which the content of a 
register is over-written with the two least significant bits of the instruction, or an 
“execute register” instruction.  In the latter case the instruction of a register is exe-
cuted in conjunction with the ‘IF-FOOD-AHEAD’ test, the contents of different reg-
isters being executed depending on the results of the test.  The ‘IF-FOOD-AHEAD’ 
test returns true if the ant is facing food, and false otherwise.  Note that 12 bits were 
used to allow for future specification of further registers, where 2 bits would be 
needed to differentiate 4 registers, 3 bits to differentiate 8 registers, and so on.  The 
pseudocode in Figure 1 corresponds to 4 register ants, and thus uses two bits.  

 
if (modebit == 1) then 
  if (food_ahead == true) then 
 execute instruction in register # bits 6 to 7 
  else // no food ahead 
 execute instruction in register # bits 11 to 12 
else // mode bit == 0 
 load instruction in bits 11 to 12 into register #  

bits 6 to 7 

 

Fig. 1. Instruction format and pseudocode for interpretation of the twelve bit instructions com-
prising a 4 register ant’s program 
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One implication of this instruction set is that an individual may evolve a program 
that does not consist of any ‘IF-FOOD-AHEAD’ tests. This means that the ant never 
finishes the trail, because it never moves anywhere. In order to penalize this property, 
an additional constraint is introduced in which the number of register references made 
per grid is limited to the maximum number of instructions. Table 2 summarizes the 
parameters used to define the linear GP runs, where the two different crossover types 
are explained in Section 3.  Note that both implementations will contain individuals of 
the same lengths in the initial population.  The implementations use the same seed to 
generate the lengths with a uniform random distribution, with an individual’s mini-
mum length being 4 instructions (1 page) and maximum length being either 64 in-
structions (16 pages) or 128 instructions (32 pages). 

Table 2. Parameterization of Linear GP for the San Mateo Trail 

Generic Linear GP Parameters 
Population size 125 P(crossover) 0.9 
Number of trials 50 P(mutate) 0.5 
Selection method Steady state P(swap) 0.9 
Number of registers 4 or 8 Maximum number of  50 000 
Tournament size 4 Generations  

Fixed Size Linear GP (FS L- GP) 
Maximum number  16 or 32 Instructions /  4 
of pages  Page  

Variable Size Linear GP (VS L-GP) 
Instruction limits [1...16] x 4  Maximum number  64 or 128 
at initialization Or of instructions  
 [1...32] x 4   

3   Crossover Operators 

Comparison is made between two linear GP crossover types. In the first case, the ex-
change of arbitrary instruction sequences takes place under the control of crossover as 
outlined by Heulsbergen [7]: Instead of exchanging n instructions from one individual 
with m from another, where it was not necessarily the case that n = m, we ensured that 
l instructions were exchanged between each individual where 1 ≤ l ≤ 
min(length_indiv1, length_indiv2).  This results in individuals of fixed length, i.e., the 
only way that the population distribution of lengths changes is through children from 
parents of one length over-writing less fit individuals of a different length.  The length 
l was chosen from a uniform random distribution, along with a start point for each 
parent, sp1, sp2, also selected from a uniform random distribution. Then, beginning at 
the respective start points in each parent, l instructions were exchanged. If l exceeded 
the lengths of one or both of the individuals based on start point, l and the start points 
were re-chosen. Hereafter this is referred to as variable size (VS) crossover. 

In the second case, called “fixed size” (FS) crossover, individuals are defined in 
terms of a number of pages where each page consists of a fixed number of instruc-
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tions (always 4 in these experiments).  Crossover may now only take place between 
single pages from each parent, resulting in fixed length individuals [8].  In both cases, 
the mutation operator selects an instruction with uniform probability and performs an 
EX-OR operation with a randomly created bit sequence.  Field specific mutation was 
not used since it was not found to result in an improvement for two register address-
ing formats, as is used in this research [8].  Finally, an additional ‘swap’ mutation op-
erator interchanges two randomly chosen instructions within the same individual. This 
operator was found to provide a useful method for code re-ordering in linear GP [8]. 
In summary, the only difference between the two forms of linear GP is the two point 
crossover operator. 

4   Code Regularity (Repeating Sequence) Analysis 

In this section we are interested in establishing whether code regularity is being estab-
lished to a greater extent in fixed size (FS) linear GP or variable-size (VS) linear GP, 
where Langdon and Banzhaf [2] already recognize the presence of repeated sequences 
in linear GP genomes in general.  If regular code sequences could be established, in 
conjunction with regularity found in the nature of the solutions, we will establish that 
fixing the crossover points enables the evolution of code with respect to page-
boundaries to provide building blocks that form repeating sequences. 

In order to measure code regularity, the frequency of seeing different instruction 
sequences (of a given length) within final solutions is recorded. This is then normal-
ized with respect to the total number of sequences of that length, to provide results in-
dependent of instruction count. To do so, the concept of instruction type needs to be 
established. Here, an instruction with a mode bit of ‘0’ (load instruction, Figure 1) 
could be type 1, 2 or 3, depending on the last two bits (which dictates what is loaded 
into the register). Any instruction with a mode bit of ‘1’ (act on information in the 
registers, Figure 1) is always a type 4 instruction.  Register information cannot be 
used in this instruction type because which register is used with mode bit ‘1’ depends 
on a factor not determined by an individual’s instructions—namely the 
‘IF_FOOD_AHEAD’ test (see Section 2).  This parameterization is designed to reveal 
how instructions relevant to ant behavior may be repeated in order to use those behav-
iors in the formation of solution strategies.  The relevant fields are selected such that 
all components of ant behavior are accounted for: executing and loading, including 
the placing of particular commands in memory registers so they will be executed.  In 
other words, this parameterization allows an analysis of instruction sequence as op-
posed to simple bit sequences.  In this respect, all possible information on instruction 
sequences is gathered.  The instruction types are outlined in Table 3. 

Table 3. Instruction Type Definitions 

Mode Bit Register Field Instruction Type 

00 (right) 1 
01 (left) 2 

 
0 (load) 

10, 11 (move) 3 
1 (act on register) N/A 4 
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Instruction sequences identified take the form of any combination of instruction 
type over a pre-specified length of two, three, four and pairs with a wildcard (three in-
structions with one unidentified). This results in 16, 64, 256 and 48 different combi-
nations of instructions respectively.  All the instruction sequences present for each of 
the four lengths are ordered and the number of times each sequence occurs for each of 
FS and VS is recorded.  Finally, in order to summarize this large amount of informa-
tion, a count is made of the number of times that either page or variable size crossover 
results in a larger count than the other for each possible instruction type sequence.  
This provides a concise way of seeing which implementation possessed higher levels 
of code regularity.  The number of times the larger count occurs for FS and VS for 
each sequence of some length is then normalized by dividing it by the total number of 
possible sequences of that length to yield a percentage.  Figures 2 and 3 summarize 
this information for the case of a maximum instruction limit of 128 instructions over 
the 50 trials for the 4 register and 8 register ants, respectively.  Note that if the total 
percentage of largest counts accounted for by both VS and FS crossover cases do not 
total 100% for a particular sequence length, the remaining difference is the percentage 
of the sequences where the counts were tied between the FS and VS implementations. 
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Fig. 2. Number of maximum occurrences/highest code regularity for either VS or FS for each 
instruction sequence possible for a given sequence length in 4 register ants with a maximum in-
struction limit of 128 
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Fig. 3. Number of maximum occurrences/highest code regularity for either VS or FS for each 
instruction sequence possible for a given sequence length in 8 register ants with a maximum in-
struction limit of 128 

Figure 2 and 3 indicate that the fixed size case records a high number of maximum 
counts. Moreover, the distinction becomes increasingly more apparent as sequence 
length increases, where specificity (of code) increases with increasing sequence 
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length. Thus, fixed size crossover does indeed solve problems with higher levels of 
code regularity because its solutions contain more repeated sequences of each length.  

However, does this higher code regularity come at a cost of disruption in fitness?  
To test this, we compared parent and child fitness and command difference with each 
tournament round.  To compute the command difference between parent and child the 
number of different instructions with respect to each location is simply counted.  
Since both FS and VS crossover enforce a fixed length chromosome for parent and 
child, a simple count will always suffice.  Each command pair must have the same bit 
string and position in each individual for the two commands to be considered the 
same.  This is reasonable given that the action of the ant given the bit string relies so 
heavily on the previous instructions to dictate its current place on the grid and its reg-
ister contents.  Fitness difference and command difference are then plotted with the 
percentage of total evaluations that account for that fitness-command difference pair. 
The ensuing data structure details the fitness change that results from a difference in 
genome sequence, as well as how likely that change is.  Finally, the difference in the 
percentage of cases (fixed size – variable size) is plotted to indicate whether FS 
crossover is responsible for more / less cases of fitness decline, as well as the magni-
tude of those declines.   

The results for individuals differing by 1 to 8 commands are shown in Figure 4 for 
the 4 register, 128 (maximum) instruction experiment of 50 trials.  The command dif-
ference is restricted to the range 1 to 8 because a maximum of 8 commands can be 
different between two ants in the fixed size implementation in the situation where two 
pages (4 instructions each) have been crossed over and none of the corresponding in-
structions for those pages match in either individual.  The possibility of 0 commands 
being different is not of interest, for the fitness difference will necessarily be 0. Fit-
ness differences greater than zero favor FS and those less than zero favor VS. 

 

 

Fig. 4. Fitness change difference (Fixed size – Variable size) given command difference and 
the percentage of evaluations in which it occurs over 50 trials for the 4 register, 128 maximum 
instruction experiment 
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From Figure 4 it is noted that there is only a fitness difference in +/- 1 % of the 
cases (except for only 3 outliers) between the fixed size and variable size implemen-
tations.  Furthermore, higher (lower) command difference changes consistently favor 
the fixed size (variable size) implementation. When considering all data projected 
onto only the fitness change and difference axes, a t-test indicated no significant dif-
ference between fixed size and variable size (0.803).  The percentage of cases that 
were declines, gains, or had no change in fitness over 50 trials for the fixed size and 
variable size implementations is shown below in Table 4.  The numbers are almost 
identical. The overall analysis indicates that the higher code regularity of the fixed 
size implementation is certainly not at a cost of fitness disruption.  

 
Table 4. Percentage of Cases that were Declines, Gains, or No Change for Fixed size and 
Variable size Implementations over 50 Trials for 4 Register, 32 Page Maximum Ants 
 

Fitness case Fixed size Variable size 
Declines 86.80% 86.96% 
Positives 6.32% 6.41% 
No Change 6.88% 6.63% 

5   Solution Regularity Analysis 

The purpose of this section is to identify whether fixed size crossover has any impli-
cations for the strategy learned.  To do so, we examine the fitness measure, which is 
simply the number of pieces of food ‘eaten’ by the ant, at each instruction throughout 
a typical tournament in relation to the genome.  Firstly, a point is plotted in 3 dimen-
sions for each piece of food eaten per instruction per tournament round.  Since this 
data is hard to visualize in 2 dimensions, we illustrate these properties more formally 
by projecting all the data points on to the fitness and instruction axes, normalize to a 
range of 0 – 100% and construct a series of ten histogram bins at intervals of 10%. 
The process is repeated for all converging 50 trials and a student t-test performed for 
the independence of the distribution associated with each bin across the trials. This is 
summarized in Figure 5, whereas Figure 6 plots the mean accumulation of fitness in 
each bin (note the log axis implies that the shorter the bar, the greater the accumula-
tion of points).  
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Fig. 5. T-test for hypothesis of same fitness means per histogram bin 
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It is now apparent that the fixed size approach uses more points in the bins 1, 2,  4-
7, Figure 6, where this is statistically significant at the 90% confidence interval in 
bins 1, 2, and 6 (Figure 5). In effect, the sharper, more immediate fitness accumula-
tion by the genome for FS crossover has a greater accumulation over the first 2 bins, 
whereas the VS crossover results in a more gradual fitness accumulation as instruc-
tions are executed, indicated by the higher accumulation for VS in bin 3. The earlier 
achievement of fitness accumulation for FS is then apparent in the higher accumula-
tion for bins 4 to 7. While the FS instruction set has mostly finished its fitness accu-
mulation toward the end of the genome, the VS scheme dominates the remaining 
three bins, Figure 6.  
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Fig. 6. Histogram for fitness (log scale) 

The accumulation of fitness points is thus markedly different in VS as opposed to 
FS.  The FS individuals with repeating instruction sets provide the same fast initial 
fitness accumulation strategy behavior in each case, whereas the VS individuals sim-
ply accumulate fitness gradually across the genome. Thus, the FS individuals match 
code (genotype) regularity with solution (phenotype) regularity.  Section 4 and 5 to-
gether thus show that the FS implementation yields more repeating sequences than 
VS and that FS also repeatedly exhibits a strategy of more efficient fitness gathering 
within the solution.  Recall from Section 2 that the minimum and maximum lengths of 
individuals are identical for VS and FS, the initial populations consist of individuals 
of identical length, and all operators were identical except for crossover.  Thus, the 
fitness accumulation strategies must be attributable to the function of the different 
crossover operators. 

6   Conclusion and Future Work 

Two linear GP (L-GP) implementations were examined using a benchmark problem 
chosen for the characteristic that it involved gradual fitness accumulation with in-
creasing instruction count. Thus, performance could be attributed to particular areas 
of the genome.  One implementation used a crossover operator that allowed exchange 
of a variable number of instructions between two individuals (VS), while the other 
implementation used a crossover operator that only permitted the exchange of a fixed 
number of instructions (FS).    The results are summarized below in Table 5. Examin-
ing Table 5, it establishes the argument for the presence of repeated sections of code 
that result in problem solving strategy formation without fitness disruption (building 
blocks).  
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Table 5. Summary of results of all experiments conducted 

Experimental Factor Fixed Size Variable Size 
Genotype regularity Always higher Always lower 
Phenotype regularity Efficient fitness gathering Sparse fitness gathering 
Fitness decline Approximately equal Approximately equal 
 

Section 4 of the paper established rows 1 and 3: An analysis of the genotype of the 
FS and VS individuals found that the FS implementation generated individuals with a 
higher number of repeating instruction sequences than the VS implementation. The 
comparison of genotypes also established that the higher code regularity of the FS 
implementation did not come with an associated cost of fitness disruption.  Section 5,   
where the actual solutions produced by the genotypes, i.e., the phenotypes, were  
analyzed establishes row 2.  Here, the FS program was found to form a particularly 
efficient fitness gathering strategy as opposed to the VS implementation where fitness 
gathering simply occurred gradually across the genome. 

The appearance of code repeatability points to the presence of re-usable modules.  
These repeated sections that can be modularized were evolved in our implementation 
rather than having the modules specified a priori.  Future work will involve ways of 
effectively identifying the modularity of the repeated sections and their use as evolved 
functions within the individual’s program. 
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Abstract. In this paper the implementation of Genetic Programming (GP) to 
optimise a controller structure for a supply ship is assessed. GP is used to 
evolve control strategies for manoeuvring the ship. The optimised controllers 
are evaluated through computer simulations and real manoeuvrability tests in a 
water basin laboratory. In order to deal with the issue of generation of 
numerical constants, two kinds of GP algorithms are implemented. The first one 
chooses the constants necessary to create the control structure by random 
generation . The second algorithm includes a Genetic Algorithm (GA) for the 
optimisation of such constants. The results obtained illustrate the benefits of 
using GP to optimise propulsion and navigation controllers for ships. 

1   Introduction 

In order to ensure the safe navigation of surface vessels their motion (i.e. navigation 
and propulsion capabilities) has to be controlled accurately. This can be achieved 
through the design and implementation of automatic control systems. The 
performance of the control techniques depends not only on the control structure but 
also on the values of the controller's parameters. Conventionally, these parameters are 
manually tuned by the designer. This relies on an ad hoc approach to tuning, which 
depends on the experience of the designer. A solution to this problem (widely used in 
the field of control engineering [1]) is to use evolutionary optimisation techniques 
such as Genetic Algorithms (GAs) that tune such parameters automatically.  

However, GAs are parameter optimisers and in the majority of cases do not vary 
the structure of the optimising subject. In the context of controller optimisation they 
are presented with the structure of a particular control methodology and vary the 
associated parameters to obtain the desired performance for the system [1-3].  

Genetic Programming (GP) [4] evolves candidate solutions without specifying a 
priori their size, shape or structure. By using GP, the optimisation problem of finding 
a near-optimal controller is taken a step forward in that the structure of the whole 
controller is optimised and not only the parameters that define such a structure.  
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The particular application used in this research is a scale model of an oil platform 
supply ship called CyberShip II (CS2) [5]. The optimisation problem for the GP is to 
provide a control strategy that governs the heading and propulsion dynamics of CS2.  

The GP optimisation of the control structures has been conducted through 
computer simulations in Matlab using a mathematical model of CS2. The optimised 
controllers have been implemented and tested on the physical model of CS2.  

In order to deal with the issue of the generation of numerical constants, two kinds 
of GP algorithms have been implemented. The first one chooses the constants 
necessary to create the controller structure by random generation (GP+RG) [4]. The 
second GP algorithm includes a GA technique for the optimisation of such constants 
(GP+GA) [6]. The results obtained from both methods are presented and compared. 

2   CyberShip II 

The control subject used in this work is CS2, which is a scale model (scale 1/70th 
approx.) of an oil platform supply ship. This test vessel has been developed at the 
Marine Cybernetics Lab (MCLab) at the Norwegian University of Science and 
Technology (NTNU) in Trondheim, Norway. The MCLab is a purpose built 
experimental laboratory for testing of ships and underwater vehicles. For more 
information about the MCLab and CS2 refer to [5], [7] and [8]. 

Prior to the real testing the non-linear hydrodynamic model of the vessel has been 
used for the simulations of the design stage. The model corresponds to the non-linear 
state space equation [10]: 

BxA(xx ⋅+⋅= )                                                  (1) 

Here x = [ν, η]T, where ν = [u, v, r]T is the body-fixed linear and angular velocity 
vector and η= [x, y, ψ]T is the Earth-fixed position and orientation vector. τ = [τ1, τ2, 
τ3]

T is the input vector (τ1, τ2 and τ3 are the forces and torque along the X, Y and Z-
axis). These are the inputs to CS2 that are used to control its motion. 

In order to create a more realistic environment, wind generated waves are 
simulated during the manoeuvres used to evaluate each tree during the optimisation. 
These are the most relevant disturbances experience by surface vessels and they can 
be realistically reproduced in the MCLab during tests. 

The model that has been used to simulate the waves’ action on the vessel derives 
from the forces and moments induced by a regular sea on a block-shaped ship [9]. It 
forms a vector called τwaves that is directly added to the input vector, , in (1).  

3   Genetic Programming 

The optimisation criterion used in this study is defined by the cost function in (2). 
Since the objective of the controllers is to make the vessel track desired heading and 
propulsion trajectories with the minimum actuator effort, the components of the cost 
function must reflect these design objectives [11].  
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Here, Δψi is the ith heading angle error between the desired and obtained heading, 
τ3i is the ith yaw thrust force, Δui is the ith surge velocity error between the desired 
and obtained surge velocity and τ1i is the ith surge thrust force. Therefore, the 
quantities Δψ and Δu give an indication of how good the tracking is between the 
actual and the desired heading and surge velocity, and the input components τ3 and τ1 
are used to keep the actuators to a minimum so that they are within the operating 
limits.  

The third and sixth terms of (2) introduce a measurement of the inputs rates [11]. 
The minimisation of these terms helps reduce the oscillations in the inputs, avoiding 
unnecessary wear and tear of the actuators that shortens their operational lifespan.  

Also, in (2), tot is the total number of simulation time steps and λ1, λ2, μ1 and 
μ2 are scaling factors. As the input force and torque are always larger than the 
output errors near the optimum, they dominate the cost values in this critical area 
of the search space. It leads to solutions that provide very small thruster effort, 
but very poor tracking of the desired responses. In order to avoid this, these four 
weighting coefficients are introduced, so that an equally balanced trade-off 
between the six terms of the cost function is obtained. It is a single objective, 
multi-aspect criterion.  

3.1   GP Operators 

Selection. In this research tournament selection has been used [12]. 

Crossover. In this work subtree crossover [4] has been used and the probability of 
crossover has been chosen to be 80% due to the satisfactory results obtained with this 
probability in a study comparing the performance of various crossover probabilities 
and mutation probabilities presented in [3]. 

Mutation. The tree structure of GP solutions allows a variety of mutation operators. 
In this study a combination of two methods is employed i.e. subtree mutation [4] and 
point mutation [19]. Mutation occurs with a probability of 0.1 [3]. Once a tree is 
chosen for mutation, the probability of undergoing subtree or point mutation is 0.5. 

3.2   GP Coding in Matlab 

The GP algorithm used in this paper is coded in Matlab. The difficulty of coding GP 
in Matlab lies in the lack of pointers. This requires a different coding approach. The 
whole population is stored in a cell array, every cell storing one individual. The tree 
structure is represented by a matrix (see Fig. 2) in which the number of rows is the 
number of internal nodes and it is evolved along the GP generations. Every internal 
node is encoded as a 1x5 vector (see Fig. 1). 
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Fig. 1. Internal node representation. The first element in the node vector is the node number. 
The second element distinguishes if the arguments of the function are terminal nodes or internal 
nodes (for example, a value of 0 indicates that both arguments are terminal nodes and a value 
of 1/2 indicates that the 1st/2nd argument is an internal node). All the internal nodes have arity 1 
or 2. The three last elements provide the arguments of the functions in columns 3 and 5 and the 
function itself in column 4. If an argument is a terminal, it is included in the correspondent 
position; otherwise the numeric value refers to the number of the internal node that is rooted 
there [3] 

Fig. 2. Matrix representation of a tree. The tree structure needs to be flattened so every internal 
node is assigned a number. The nodes of the tree are counted from left to right, upwards. A 
node is not counted until all the nodes of the subtrees rooted in it are counted 

3.3   GP Application to the Control Problem 

Every solution to the stated control problem consists of two independent trees: one for 
heading control and other for propulsion control (i.e. decoupled controllers).  

For this application the terminal set consists of 4 common terms: error, state, 
reference and one numerical constant as shown in Table 1.  

Table 1. Terminal sets for propulsion and heading. The propulsion terminal set consists of the 
surge error (Δu = ud – u), surge (u) and desired surge (ud) plus one numerical constant. The 
heading terminal set consists of the heading error (Δψ= ψd – ψ), heading (ψ) and desired 
heading (ψd) plus one numerical constant (R) 

Propulsion Heading 
surge error (εp) heading error (εh)

u ψ 
ud ψd 
R R 

 

1 0 5 + 6 
2 1 1 + 2 
3 2 x * 2 

 
x 

* 

+ 

+ 

6 5 

2 



254 E. Alfaro-Cid, E.W. McGookin, and D.J. Murray-Smith 

 

The probability of generating a numerical constant is 0.5 since the number of 
numerical constants required to create a control structure is larger than the number of 
variables. 

The function set is formed by eleven functions. The four basic arithmetic 
operations {+, -, *, /} are routinely included in most GP algorithms. The integral and 
derivative functions are included to account for a PID type of structure. The 
hyperbolic tangent and sign functions allow the construction of switching terms 
equivalents, which are similar to Sliding Mode (SM) control [2]. The place command 
is included as a Pole Placement (PP) technique [14]. In addition, the sine and 
exponential functions give more versatility to the algorithm.  

Table 2. Function set. The function set includes functions that are related to the following 
control techniques: PID, Sliding Mode and Pole Placement 

2-argument functions 
arg1 arg2 arg1 + arg2 

arg1 - arg2 arg1 / arg2 
arg1 tanh(h'(x - xd) / arg2)) 

1-argument functions 
 arg dt d(arg) / dt 

sin(arg) exp(arg) 
arg sign(h'(x - xd)) 

1/2-argument functions 

place(-arg) 
place(0, -arg1, -arg2) 

In the hyperbolic tangent and sign formulas from Table 2, x = [u] and xd = [ud] for 
the propulsion control tree, while x = [v, r, ψ]T and xd = [vd, rd, ψd]

T for heading. The 
h matrix is the right eigenvector associated with a zero pole for the desired closed-
loop system matrix calculated based on the best solution found in a GA optimization 
of a decoupled SM controller [2, 3]. 

The place command returns the value -k⋅x, where x is as defined before and k is 
the feedback vector obtained by executing place (0, -arg1, -arg2) in the heading 
control or place (-arg) in the propulsion control.  

In order to ensure that the closure property is met, the poles to be assigned by the 
place command are always real numbers and some of the functions have a protection 
mechanism. Thus, the hyperbolic tangent returns arg1 when arg2 is 0 and the place 
command returns 0 if there is any error flag (e.g. if the poles are too close).  

3.4   Random Generation of the Numerical Constants 

In the first implementation every time the random constant R in the set of terminals is 
chosen a random number is generated and associated with that terminal node [4]. The 
GP should be able to generate other constants needed by using arithmetic operations.  

As opposed to Koza’s GP that does not use mutation, in this work point mutation 
has been included as an operator. This enables the GP to modify the terminal values. 



 Evolution of a Strategy for Ship Guidance Using Two Implementations of GP 255 

 

Thus, a numerical constant can change its value and a terminal occupied by a variable 
can be mutated into a numerical constant. 

3.5   GAs Optimisation of the Numerical Constants 

Various authors have pointed out that the random generation of numerical constants is 
not a very efficient way of creating new constants [6, 15, 16]. The main drawback of 
this approach is that the number of constants depends totally on the initialisation of 
the trees.  

Various approaches can be found in the literature that address this issue. In [6] the 
authors combined a GP with a GA for the tuning of the numeric parameters in the GP 
tree. They associate a GA-like fixed-length chromosome that represents the numerical 
values of the solution, although they may or may not be present in the tree. The 
chromosome is evolved together with the tree and is submitted to crossover and 
mutation. The main problem of this approach is that the fixed-length of the 
chromosome determines the maximum number of numerical constants that can be 
found in the tree. This requires a priori knowledge of the solution. Also, if the 
chromosome is made to be very long just to account for any additional constant, the 
length of the chromosome hampers the correct evolution of solutions and increases 
the computational cost. 

In this work, the second GP algorithm tested uses a GA as a parametric 
optimisation technique. The aim is that the GP+GA algorithm provides a better 
parameter tuning and better results. The GP+GA method used is basically different 
from the mechanism presented by [6]. Instead of associating a GA chromosome with 
a GP tree and evolving them together, GP+GA combines a GP evolution process with 
a GA learning process, i.e. every time a tree is evaluated a mini-GA is run to optimise 
the values of the numerical constants present in that tree. With this approach the 
maximum number of constants in the tree does not need to be fixed and only those 
constants that are in the tree are encoded, reducing the size of the chromosomes. 

The GP+GA has been coded so that the total number of tree evaluations is the 
same as in the GP+RG case, providing a good basis for comparison. The number of 
trees in the population used in GP+RG is 120 and the number of generations is 31. In 
order to get the same number of evaluations for the GP+GA optimisation, the GP has 
a population of 31 individuals and it runs for 8 generations. Each GA has a population 
of 5 individuals and it runs for 3 generations.  

4   Results 

The manoeuvre used for the GP optimisation in the evaluation of the candidate 
solutions has been a double step manoeuvre of 45o for heading while increasing the 
speed from rest to 0.2 m/s and back to rest [3].  

The best results found in each optimisation are validated after the optimisation. 
This validation test is used to verify that the resulting tree is actually performing a 
control task, not merely generating a signal shaped in the right way for this 
manoeuvre but totally wrong for any other.  
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The manoeuvre used in the validation test consists of two turning circles linked 
together. This manoeuvre has been chosen following the recommendations of the 
Maritime Safety Committee (Resolution MSC.137(76)) for ship performance testing. 

The resulting best controllers have been tested on the real vessel. 

4.1   GP+RG Optimisation: Simulated and Real Results 

The cost functions obtained after the GP optimisation are presented in Table 3. It can 
be observed that the best overall result is obtained from run 1. Some of the good 
results from the GP optimisation failed the validation test (e.g. results from runs 8, 19 
and 20). This corroborates the importance of the validation test. 

Table 3. GP results obtained in the optimisation using the double step manoeuvre and the 
validation test using a double turning point 

Run Double Step Turning Run Double Step Turning 
1 12.90 79.78 11 285.32 841.22 
2 79.15 213.40 12 53.37 534.41 
3 123.78 360.49 13 132.25 445.48 
4 18.09 194.95 14 114.01 705.51 
5 7.63 289.88 15 275.93 954.56 
6 51.55 646.29 16 95.92 150968.05 
7 120.11 423.66 17 327.72 53316.41 
8 12.34 593943.52 18 351.56 53180.82 
9 370.40 949.33 19 30.52 735485.71 

10 328.79 843.70 20 47.73 1501055.7

The structures of the controllers from run 1 are based on an hyperbolic tangent: 
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By analysing the range of values that perform as argument of the hyperbolic 
tangents it is easy to see that the functions are not reaching the saturations limits, 
therefore the hyperbolic tangents are acting as proportional controllers [2]: 

( ) ( )ddpcom uuuh sin25.17 '
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( )hdh
'
h3 19 xxh −⋅⋅−≈comτ                                       (6) 

Since at low speed sin(ud) ≈ ud, in this case, the sine term is acting as a feedforward 
control (i.e. provides the same control effort regardless of the current surge value).  

Fig. 3 illustrates the simulated performance of the controllers from Eq. (3) and (4). 
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Fig. 3. Simulated results of the GP+RG optimisation. The upper subplots represent the desired 
(dashed line) and measured (solid line) outputs, u (left) and ψ (right). The subplots in the 
middle represent the output errors, i.e. the surge error, ud – u (left), and the heading error, ψd - 
ψ (right). Finally, the subplots at the bottom depict the control signals τ1 (left) and τ3

 (right) 

It can be seen that the performance of the controller for the evaluation manoeuvre 
is quite good. In the propulsion control there is a slight steady-state error caused by 
the lack of integral term. Also, the gain of the controller is quite low, which explains 
the slow transient response. The heading control performs better that the propulsion 
one. The tracking is very good apart from a slight overshooting. Both controllers keep 
the actuator signals within limits and are not significantly affected by the 
disturbances, apart from the ripple in the actuators forces. 

Fig. 4 shows the results obtained when the controllers are tested in the water tank. 
The real responses obtained are satisfactory. The tracking is quite good, especially for 
the heading response, although the same overshooting that has been observed in the 
simulated response can also be observed. The surge tracking is satisfactory. Both 
controllers keep the actuators signals within the limits. A delay is introduced by the 
system that induces very high initial control signals until the manoeuvre starts. 

 

Fig. 4. Real results of the GP+RG optimisation. The format of the figure is as in Fig. 3  
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4.2   GP+GA Optimisation: Simulated and Real Results 

The best cost values obtained in the runs of the GP+GA optimisation are shown in 
Table 4. In general, the GP+GA scheme has converged to worse cost functions. The 
best overall cost has been achieved from run number 1.  

Table 4. GP+GA results obtained in the optimisation using the double step manoeuvre and the 
validation test using a double turning point 

Run Double Step Turning Run Double Step Turning 
1 50.13 239.91 11 228.93 47737.78 
2 143.78 332.39 12 953.27 53225.26 
3 267.23 750.16 13 629.91 1411779.6
4 262.70 38420482.8 14 229.21 640.17 
5 115.50 323.28 15 319.63 871.85 
6 353.10 834.67 16 330.65 66907.90 
7 394.20 837.06 17 530.52 1487.08 
8 118.84 347.29 18 561.61 54399.76 
9 128.37 687.91 19 908.00 54393.05 

10 127.65 721.92 20 747.22 55726.58 

The structure of the best result consists of a hyperbolic tangent for the heading 
control and a proportional controller for the propulsion. As before, the hyperbolic 
tangent in Eq. (8) acts as a proportional controller and can be expressed as in Eq. (9): 

pcom ετ ⋅= 6.931
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The heading controller in Eq. (8) is equivalent to that of Eq. (4) but with a smaller 
gain. The propulsion controller substitutes the feedfoward term by a higher gain. 

 

Fig. 5. Simulated Results of the GP+GA Optimisation. The format of the figure is as in Fig. 3 



 Evolution of a Strategy for Ship Guidance Using Two Implementations of GP 259 

 

While comparing the simulated performance of the controllers from Eq. (7) and (8) 
shown in Fig. 5 with the performance of the controllers obtained in the GP+RG 
optimisation (see Fig. 4) it can be observed that the heading response is very similar. 
Regarding the propulsion control, although this controller achieves a faster transient 
response and better tracking of the reference (due to a higher gain), the control effort 
and the rippling in the signals is worse, which leads to a higher cost function.  

Fig. 6 shows the results obtained when the controllers are tested in the real plant. 
The heading response is similar to that of the GP+RG optimisation (see Fig. 4). The 
propulsion control effort reaches the actuator limits causing peaks in the error signal. 

 

Fig. 6. Real Results of the GP+GA Optimisation. The format of the figure is as in Fig. 3 

5   Conclusions 

The results obtained in the GP optimisations are very satisfactory. The manoeuvring 
performance of the controllers illustrated in the figures also proves their adequacy. 

Although the numerical cost values obtained with the GP+RG optimisation are 
better, both GP implementations have converged to trees that provide very similar 
control strategies. The best results obtained in both sets of runs are based on a 
hyperbolic tangent function providing the heading control and a proportional term 
or a hyperbolic function acting as a proportional term providing the propulsion 
control. 

The terminal values chosen by the search method as arguments for the 
hyperbolic functions for these best results make this function operate in its 
proportional range instead of in the switching area. Thus, in the case of the 
propulsion control, since the subsystem is of 1st order, the hyperbolic tangent 
provides an outcome proportional to the surge speed error (i.e. a proportional 
term). In the case of the heading control, the resulting commanded force is 
effectively of the form: τ3com ≈ -k⋅h’⋅(x – xd), i.e. a full state feedback control with 
a feedback matrix and a conditioning matrix equal to k⋅h’. 
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Abstract. In real-time rendering, objects are represented using poly-
gons or triangles. Triangles are easy to render and graphics hardware is
highly optimized for rendering of triangles. Initially, the shading com-
putations were carried out by dedicated hardwired algorithms for each
vertex and then interpolated by the rasterizer. Todays graphics hard-
ware contains vertex and pixel shaders which can be reprogrammed by
the user. Vertex and pixel shaders allow almost arbitrary computations
per vertex respectively per pixel. We have developed a system to evolve
such programs. The system runs on a variety of graphics hardware due
to the use of NVIDIA’s high level Cg shader language. Fitness of the
shaders is determined by user interaction. Both fixed length and vari-
able length genomes are supported. The system is highly customizable.
Each individual consists of a series of meta commands. The resulting Cg
program is translated into the low level commands which are required
for the particular graphics hardware.

1 Motivation

In computer graphics three dimensional objects are usually represented using
polygons. Polygons in turn can be broken down to triangles. A triangle is to
computer graphics what the atom is to chemistry. Even curved objects such as
spheres or cylinders are approximated with triangles. The surface nevertheless
appears round due to special shading techniques. The advantage of using trian-
gles is that the graphics pipeline can be highly optimized. A triangle consists
of three vertices. Each vertex is assigned a number of attributes such as color,
reflectance properties or a normal vector. Initially, graphics libraries used fixed
algorithms to compute the color of a vertex using the assigned reflectance prop-
erties of the material it is supposed to represent [1, 6, 24]. After the color of the
vertex is calculated, the polygon or triangle is filled by interpolating the colors
computed for the vertices. This method is called Gouraud shading. In todays
graphic hardware these shading algorithms are no longer fixed, they can be re-
programmed by the user. This is done using pixel and vertex shaders [3, 10]. A
vertex shader is a small program which computes or modifies attributes such
as position, normal vector, or reflectance properties. These attributes are inter-
polated to obtain the data for each pixel. A pixel shader is used to compute
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the color of each pixel from these attributes. Both, vertex and pixel shaders are
programs which can be evolved. Use of genetic programming [2, 7, 8] to evolve
shaders was originally suggested by Kenton Musgrave [12].

We have developed a system which allows us to evolve pixel and vertex
shaders by user interaction [17]. The system starts off with a number of ran-
domly created pixel shaders and a fixed vertex shader or vice versa. The pixel
and vertex shaders are applied to an object which is shown to the user. The
user can then judge how good the pixel respectively vertex shader is and set its
fitness value. Genetic operators are applied and new shaders are created. Again
the shaders are presented to the user which has to rate the quality of the shaders.
This process can continue for as long as the user wants. In the following we will
first summarize some background material on vertex and pixel shaders. Then we
describe our system and the experiments we have made.

2 Vertex and Pixel Shaders

Vertex and pixel shaders can be reprogrammed using a custom assembly lan-
guage. A vertex shader receives its input, the attributes of a vertex, through
a fixed number of registers. This input is read-only. A vertex shader processes
four dimensional data. Each register contains four floating point numbers which
map naturally to the three color bands red, green, and blue. The fourth compo-
nent describes how transparent the object is. A set of output registers is used
to store the modified attributes. Another set of registers can be used during the
computation. A small amount of memory can also be accessed read-only.

A vertex shader program consists of a sequence of commands. Originally, a
vertex shader could contain a maximum of 128 commands. The set of commands
included standard arithmetic operators such as addition, subtraction, multipli-
cation and computation of the scalar product between two vectors. Apart from
the standard operators, some commands also addressed the special needs in com-
puter graphics such as the computation of coefficients for ambient, diffuse and
specular lighting or the computation of coefficients for light attenuation. Orig-
inally, there were no explicit flow control statements such as if, for, while or
goto. However, it was possible to implement if-then-else operations within the
simple instruction set given. Subsequently vertex shader instructions now also
contain flow-control instructions to jump forward, loop a fixed number of times,
and call subroutines [1].

A pixel shader is used to compute the color of every pixel of a fragment. It
receives the interpolated components such as diffuse and specular light which
was computed by the vertex shader as input. The vertex shader also has access
to multiple textures and can combine the diffuse and specular components with
this texture data. The registers of a pixel shader contain four values where the
red, green, blue and alpha components of a color are stored. There are also
a number of registers where temporary data may be stored and some address
registers through which texture data can be accessed. Like the vertex shader,
a pixel shader is a small program. The difference is that the commands of the
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pixel shader are tailored for texture access. It consists of two set of commands,
arithmetic operations and operations for texture addressing. No explicit flow
control statements are included. Using a pixel shader it is also possible to change
the depth of a pixel or even end further processing of a patch.

3 Evolution of Vertex and Pixel Shaders

Both vertex and pixel shaders are basically short sequences of commands which
can be evolved. Evolution of shaders was originally proposed by Kenton Mus-
grave [12]. Loviscach and Meyer-Spradow [9, 11] evolved vertex and pixel shaders
using a one-to-one fixed length representation between the genotype and the
assembly language of the hardware. In contrast to the system by Loviscach
and Meyer-Spradow, we evolve shaders using NVIDIA’s high level Cg shader
language. This allows us to define arbitrary computer architectures for which
shaders may be evolved.

We have used linear genetic programming [13, 14] to evolve vertex and pixel
shaders. Each individual consists of a sequence of numbers from the range
[0, 255]. We work with both fixed and variable length individuals. The infor-
mation stored in an individual is mapped into a program as shown in Figure 1.
A reading head moves along the individual and parses byte after byte. The first
number is treated as an opcode of a command. Depending on the type of com-
mand we either need none, one, two or more arguments. If no arguments are
needed then we proceed with the next byte and map this value into another
command. Otherwise we fetch the required number of arguments from the in-
dividual and map these bytes to the corresponding variables. We then proceed
with the next byte. In order to perform the mapping from bytes to commands
respectively variables, we have defined two tables. One table lists the set of com-
mands, the other lists the set of variables. A modulo operation is used in both
cases to map any value from the range [0, 255] to a valid command respectively
to a valid variable.

We do not use a particular graphics hardware as our target. Instead, we have
chosen to use NVIDIA’s Cg Toolkit [15] to perform the final mapping to the
graphics hardware. This allows us to produce vertex and pixel shaders for all
current and hopefully all future hardware. When mapping individuals to vertex
or pixel shaders we create an output in the Cg language. The Cg language is a
high level language similar to C. A vertex or pixel shader is constructed by first
defining a wrapper. This wrapper is the same for all individuals. The wrapper
consists of a header and a footer. A shader is created by taking the header,
appending the commands as specified by the genotype, and finally appending
the footer.

Our system is extremely versatile in that we can define arbitrary computer
architectures using the table of commands and the table of variables. These
tables are not stored internally but can be modified by the user. By modifying
the tables we can vary the basic architecture of the programs to be evolved.
We can define architectures with either a one-address instruction, a two-address
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Fig. 1. An individual is mapped to a Cg program by moving a reading head along the
bytes stored in the genotype. After reading the first byte we look up the corresponding
set of statements and the number of required arguments in the list of arguments.
The byte is fed through a modulo operation to access the table. Then the arguments
are looked up in the second table. For each argument we parse another byte from
the individual. After all arguments are available we append the statements to the Cg
program. This process continues until all bytes of the individual have been parsed or
we run out of bytes

instruction or even stack based architectures. It is also possible to create new
meta commands which are not part of the original language. Each entry of
the command table can contain an arbitrary sequence of statements of the Cg
language. The required arguments are accessed through escape sequences. When
parsing the individual these escape sequences are mapped to the corresponding
variables.

Currently, we use perceptual selection [20, 21] to evaluate the individuals. We
work with small population sizes. All individuals are presented to the user for
evaluation. The vertex respectively pixel shaders are applied to a three dimen-
sional object for viewing. If the user likes what he sees, he sets the fitness of
these individuals to a high value. Figure 2 shows one step of the evolutionary
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Parent Population Offspring

Fig. 2. A population of 12 individuals is shown on the left. The user manually sets the
fitness of any individuals he likes. On the right we see the offspring population created
from the three parent individuals

algorithm. On the left, we see a 4× 3 matrix of individuals. The color bar below
each individual is used to specify the fitness of an individual. Similar methods
of interactive evaluation were used by Dawkins [4] when evolving his classic
Biomorphs. Perceptual selection is also frequently used in evolutionary art sys-
tems [5, 18, 19, 22, 25]. Rowbottom gives a review of many of these systems [19].

When the user has finished evaluating the individuals (not all individuals have
to be evaluated), the next generation of individuals is created. Both crossover
and mutation operators are used. First we decide if a crossover is applied at all
using a single crossover probability. Then we chose the actual crossover opera-
tor (one point or two point crossover) with uniform probability. After the two
offspring are created, the individuals are mutated. The mutation probability is
specified per byte. The type of mutation actually used is selected with uniform
probability. Two types of mutation operations were defined for fixed length in-
dividuals: flip mutation and swap mutation. Flip mutation replaces one byte
with a new value. Swap mutation swaps one byte with another byte of the same
string. For variable length individuals, two additional mutation operators were
used: insert and delete. The insert mutation operator inserts a new byte. The
delete mutation operator deletes a byte from the individual.

When implementing evolutionary algorithms we usually want that parent
and offspring are closely related. However our opcodes or meta commands re-
quire a variable number of arguments. If a single mutation were to change an
opcode which requires a single argument to an opcode with a different number
of arguments then this would have a large effect on the resulting Cg code. The
entire code following the locus where the mutation occurs would be changed.
Arguments would be interpreted as opcodes and vice versa. What we probably
want is that a single mutation is able to either change the opcode or the argu-
ment into some other opcode or argument. Therefore we implemented a second
parsing mode. Let k be the maximum number of arguments over all commands.
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Fig. 3. Each individual consists of a sequence of commands. The commands themselves
can either be considered to have variable length (A) or a fixed length (B). Using a
fixed length for commands has the advantage that opcodes and arguments are always
registered. Therefore, it is possible to change a single argument of an individual using
a point mutation. A crossover exchanges opcodes with opcodes and arguments with
arguments. This is not the case for (A). If variable length commands are used a single
point mutation may have a large effect on the resulting Cg code

In this case, we fetch k + 1 bytes (one byte for the opcode and k bytes for the
arguments) from the individual. The two parsing modes are shown in Figure 3.
Since we do not know which method of parsing the individuals leads to bet-
ter results, we have implemented both methods. Again, the choice on how the
individuals are evaluated, is left to the user.

4 Experiments

Figure 4 shows a collection of evolved vertex shaders. Each row shows the results
for a single shader applied to four different shapes: a plane, a sphere, a torus and
the Stanford bunny. The shaders were evolved during two runs lasting 130 and
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Fig. 4. A collection of evolved vertex shaders. Each row shows the results for a single
vertex shader. A vertex shader is applied to four different objects: a plane, a sphere, a
torus and the Stanford bunny

185 generations. Both runs used a two register machine model. The contents of
the two registers can be exchanged using a swap operation. Instructions include
addition, subtraction, multiplication, protected division, and a sine function. A
normalize function and the popular noise function [16] was also included. The set
of meta commands is shown in Table 1. The list of arguments is shown in Table 2.
Arguments include the two registers, three color vectors red, green and blue, the
current position of the vertex, normal vector, eye vector, light vector as well as
some pre-calculated values such as the half vector, diffuse and specular lighting.
An animator (a float value which changes periodically) is also included. The
animator can be used to create animated shaders. Output of register 1 is used as
the color of the vertex. We have used a population size of 12. All shaders shown
in Figure 4 were evolved using fixed length individuals of length 20. Mutation
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Table 1. List of commands

Operator Operands Result
Nop 0 No operation
Swap 0 Exchange registers 1 and 2
Noise 0 Noise function applied to register 1
Sin 0 Sine function applied to register 1
Normalize 0 Normalize register 1
Add 1 Add operand to register 1
Subtract 1 Add operand to register 1
Multiply 1 Multiply operand with register 1
Divide 1 Divide register 1 by operand, if operand is non-zero

Table 2. List of arguments

Argument
Register 1
Register 2
Red vector
Green vector
Blue vector
Position of vertex
Normal vector
Eye vector
Light vector
Half vector between light and eye vector
Diffuse lighting (dot product between normal and light vectors)
Specular lighting (dot product between normal vector and half vector)
Diffuse and specular lighting
Eye to vertex vector
Animator (changing float value)

probability was set to 1
20 which resulted in one mutation per offspring. Crossover

probability was set to 0.9. Roulette wheel selection was used to select offspring
for breeding.

Although we were able to evolve some nice shaders we also noticed some
limitations with the current approach. It is hard to evolve towards a particular
target. For instance, it would be nice to be able to select two individuals and
then obtain offspring which contain traits from both parents. If two individuals
are selected, offspring may have interesting traits but may not have the intended
look to them. I.e., if one selects a textured individual and another individual with
a different color then the next generation will contain all types of individuals
but not necessarily an individual with both the texture of one parent and the
color of the second parent. This may be caused by a number of factors. First
of all we are working with very small population sizes because fitness has to be
determined by the user. Another cause may be the use of linear individuals. It
may be that a tree based genetic representation is more amenable to evolution
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in this case. Rowbottom [19] noted that most evolutionary art systems have
a certain signature to them. This also seems to be the case here. The evolved
individuals seem to be largely a function of the type of commands and arguments
used.

5 Conclusion

Vertex and pixel shaders are an exciting concept of computer graphics. We have
developed a system to evolve vertex and pixel shaders via user interaction. In-
dividuals are interpreted as linear sequences of commands which are translated
into a high level computer graphics language. Individuals are applied to four
different objects and presented to the user who then decides which individuals
get to produce offspring.

Our system is highly customizable. With this system it is possible to define
virtual intermediate architectures. At present, it is not known which architecture
is best suited to evolve vertex and pixel shaders. Our initial experiments focused
on the evolution of linear programs. It would be interesting to see how tree based
genetic programming compares to linear genetic programming for the evolution
of vertex and pixel shaders.

Another possible extension would be the automatic evolution of shaders for
animated effects. One could take a short sequence of a movie taken with a
digital camera and then evolve shaders which mimic the effect seen in the video.
Other than evolving vertex and pixel shaders for computer graphics the concept
may also be of interest to other researches who want to speed up their genetic
programming experiments. It may be possible to use vertex or pixel shaders in
other areas such as evolution of classifiers.
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Abstract. This paper proposes a new architecture for tree-based ge-
netic programming to evolve schema directly. It uses fixed length hs-
expressions to represent program trees, keeps schema information in an
instruction matrix, and extracts individuals from it. In order to manipu-
late the instruction matrix and the hs-expression, new genetic operators
and new matrix functions are developed. The experimental results verify
that its results are better than those of the canonical genetic program-
ming on the problems tested in this paper.

Keywords: IMGP, hs-expression, instruction matrix, schema evolution,
Genetic Programming.

1 Introduction

As a branch of Evolutionary Computation(EC), Genetic Programming(GP)[1][2]
automatically constructs computer programs. A popular theory behind EC is the
schema theory[3] in Genetic Algorithms (GA). It has been extended to GP by
[4][5]. Although the schema theory explains why GP works and helps to design
GP systems, not much GP work has been done to make use of it to evolve schema
directly.

To evolve the schema directly, this paper proposes a new GP architecture,
the instruction matrix based GP (IMGP). It keeps the information of schema
in an instruction matrix, and hence it eliminates the explicit population. IMGP
extracts the individuals from the instruction matrix, executes the genetic opera-
tions on them, and updates the instruction matrix accordingly. The experiments
verify that IMGP performs better than the canonical GP on 4 testing problems.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 gives the outline of IMGP. Section 4 describes some of its operators and
functions in detail. Section 5 presents the experiments and the results. Section
6 discusses the relationship between IMGP and the schema theory. Section 7
concludes the paper.

2 Related Background

In GP, the evolution subjects are usually the individual programs and the pop-
ulation. A novel alternative is to evolve the instructions directly and use them
to construct programs.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 271–280, 2005.
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Probabilistic Incremental Program Evolution (PIPE)[6] applies Estimation
of Distribution Algorithms [7] to GP. It has a probability tree, each of whose
nodes is a probability vector, which keeps the probabilities of the functions and
terminals of the node. In each generation, PIPE creates a population by con-
structing trees based on the probability tree, and updates the probability tree
with the information from the best individual in the population. However, up-
dating the probability tree only with one individual may be unable to express
the information of the rest population. Besides, no linkage information between
nodes is kept in the probability tree.

Competent Genetic Programming[8] combines Compact Genetic Algorithm[9]
and PIPE as a multivariate probabilistic model building of GP. Its significance
is that it partitions the tree into subtrees, and builds the probabilistic model
for each subtree. Therefore, it is not only able to calculate the frequency of the
nodes, but the frequency of the subtrees as well. The computation is high as
it uses greedy search heuristic which calculates the complexity of each possible
subtree to identify good building blocks.

Grammar Model-based Program Evolution(GMPE)[10] evolves GP programs
with Probabilistic Context-free Grammar, in which each grammar has a produc-
tion probability. It updates the grammars with the superior individuals in the
population, and use the grammars to generate new individuals. A grammar can
generate a single node or a whole subtree, so GMPE also keeps the information
of some building blocks. The grammar has no position information as regard to
the whole tree, so the position of its derivative are not fixed.

3 Architecture

To calculate the fitness of the instructions and the subtrees so as to evolve
schema directly, we propose the Instruction Matrix based Genetic Programming
(IMGP). IMGP uses a fixed length expression to represent a program tree, em-
ploys a matrix instead of a population, and extracts programs from the matrix.
The other features include,

1. IMGP has multiple copies of the same instruction for each tree node.
2. It updates with all the individuals besides the best individual.
3. It keeps crossover and mutation, which are modified though.
4. The instructions have fixed positions in the tree.

3.1 hs-Expression

Rather than using the s-expression in the canonical GP[1], we propose a new
tree representation, hs-expression. It is similar to the array in Heap Sort, but the
larger-than relation changes to the parent-of relation. We use a 2D+1 − 1 long
array to store a binary tree of depth D at most, and every possible node has
a corresponding element in the array even if the node does not exist. The tree
root is element 0 in the hs-expression. For the given element at locus k in the
hs-expression, its left and right children are the 2k+1th and 2k+2th elements.
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AND

OR NOT

A B C -1

Fig. 1. hs-expression (and,or,not,a,b,c,-1)

AND

NOT OR

A -1 B C

Fig. 2. hs-expression (and,not,or,a,-1,b,c)

Fig. 3. Instruction Matrix and Extracted hs-expression. The IM keeps multiple in-
structions for each element of hs-expression. Each element of hs-expression is extracted
from the corresponding row in the IM

If it has no children, those elements are set to -1 instead. Figs. 1 and 2 are two
examples. Unlike the trees represented by s-expression, the trees of hs-expressions
of the same length have exactly the same shape if -1 is viewed as a virtual node,
and the elements at the same locus in the hs-expressions always correspond to
the nodes at the same position in the trees.

3.2 Instruction Matrix

In IMGP, the population is encoded in the instruction matrix (IM), whose
cells are instructions. Each row of the matrix corresponds to an element of hs-
expression, and each row contains multiple copies of functions and terminals.
The matrix height is 2D+1 − 1, equal to the length of hs-expression, if the tree’s
maximum depth is D, and its width is the number of functions and terminals in a
row. Fig. 3 shows a sample IM and an hs-expression extracted from it. Basically,
the element at locus k in the hs-expression is extracted from row k in the IM.
The details are described in Section 4.1.

Besides the instruction code, the matrix cell keeps some auxiliary data. A
pseudo code of its initialized data structure is shown below. Please note, the
smaller the fitness is, the better it is. The specific usages of these fields are
explained in detail in Section 4.

struct instruction {
opcode_type incode; //the instruction code
double best_fit = MAX_FITNESS; //the best fitness
double fitness = 0; //the average fitness
int left = -1; //the left child of its best subtree
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int right = -1; //the right child of its best subtree
int eval_num = 0; //the times it has been selected};

3.3 Algorithm Outline

Algorithm 1 is the main process of evolution. In each generation, IMGP does the
following steps repeatedly while counting the number of individuals evaluated.
Firstly IMGP extracts two individuals from the IM and evaluates them. Then
it tries crossover and mutation on them to produce offspring, which it evaluates
as well. For any individual, its fitness is fed back to its instructions in the IM.
At this point, all these individuals are destroyed. After evaluating P individuals,
IMGP finishes a generation by shuffling every row in the IM. When it completes
N generations, the best program is reported as the result.

Algorithm 1: The Main Program
Output: the best individual
initialize the instruction matrix;
for gen from 0 to N do

while num < P do
the number of individuals evaluated ← 0;
extract two individuals i and j from the matrix;
calculate their fitness respectively;
update their instructions with the fitness;
if crossover i with j successfully then

evaluate the offspring and update its instructions;
else if mutate i successfully then

evaluate the offspring and update its instructions;
end
if crossover j with i successfully then

evaluate the offspring and update its instructions;
else if mutate j successfully then

evaluate the offspring and update its instructions;
end
num ← num + the number of individuals evaluated;

end
shuffle the instruction matrix;

end

4 Operators

In IMGP, crossover and mutation are similar to those of the canonical tree-based
GP. However, as IMGP keeps the fitness of the instructions in the IM, when an
individual crossovers or mutates, it replaces a subtree only with a better one
so that the offspring might be better, and the two subtrees of the parents must
reside at the same position to reduce the macro-mutation effect of the standard
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crossover[2]. Due to the new representations of the individual and the population,
we have also designed three new operators to handle them as follows.

4.1 Individual Extraction

IMGP extracts the individuals from the IM probabilistically. Firstly IMGP con-
structs an empty hs-expression filled with -1, and aligns it vertically with the
IM. Then it starts to extract the root from row 0, and puts it at locus 0 in the
hs-expression. Every tree node is extracted from the corresponding row using
binary tournament selection, i.e. comparing the average and best fitness of two
randomly selected instructions, and placed at the corresponding locus in the hs-
expression. If the selected instruction is a function, IMGP proceeds to select its
left child from the 2k+1th row, and its right child, if any, from the 2k+2th row.
It does so recursively until all the branches are completed. For instance, in Fig.
3, the words of capital letters are the selected instructions, and the extracted
hs-expression is on the right. The corresponding tree is depicted in Fig.1

After a node is selected, IMGP occasionally checks whether its best subtree
should be selected as a whole so that the nodes in the best subtree are extracted
directly without binary tournament selection. How often it does so depends on
its best and average fitness. The bigger the difference between them is, the more
likely its subtree is selected. The assumption is that if the best fitness is much
better than the average fitness, the tree constructed with the best subtree is
likely to be much better than the tree constructed without it. With this method,
IMGP makes use of the good building blocks, i.e. the subtrees in the case of GP,
in the new individuals.

Extraction makes IMGP avoid focusing on a small search space. In the canon-
ical GP, when an individual changes by crossover or mutation, it replaces one of
its subtrees with a new one. The offspring is different from its parent, but it is
still in the neighborhood of the parent. Therefore, the search space of the canon-
ical GP is largely determined by the initial population. Conversely, IMGP does
not generate an individual from an existing parent. It extracts a completely new
individual from the IM, and the individual has slim similarity with the previous
individuals. Therefore, IMGP searches a relatively large space.

4.2 Instruction Evaluation

In IMGP, the individual is evaluated using the post-order recursive routine. Since
the individual is destroyed later, it cannot carry its fitness as in the canonical
GP. Instead, the fitness is fed back to its instructions as their new fitness, so the
fitness of the instructions can be used as selection criterion in extraction later.
The feedback comes in two ways:

1. The new fitness is averaged out with the old average fitness of the instruc-
tion, so we know how good the instruction is at the fixed position on average.
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2. If the new fitness is better than the best fitness of the instruction, its left
and right pointers are changed to those of the current individual accordingly.
This actually keeps good subtrees in the IM, which can be selected in the new
individuals later.

4.3 Matrix Shuffle

GP converges by spreading good instructions over the population to produce
fit individuals, as some instructions appear in many individuals. IMGP uses
matrix shuffle to propagate good instructions, and consequently to increase the
probability to select them together in an individual. It shuffles the whole matrix
row by row. In each row, it replaces the worse instructions with the better ones
in terms of their average fitness. Therefore, while the IM evolves, some good
instructions emerge to dominate the rows.

GP converges at the cost of diversity. As the population converges, the indi-
viduals become alike by and by, which means that the majority of the population
consist of the same instructions, while the other instructions seldom exist. In
IMGP, however, matrix shuffle prohibits the fitter instructions from reproducing
too many instances, and reserves a minimum number of the less fit instructions.
This thus maintains diversity effectively and easily, so it is unlikely for the indi-
viduals extracted later to have the same instructions.

5 Experiments

This section presents the performance of IMGP on 4 benchmark problems to
verify its superiority to the canonical GP.

The first problem is the symbol regression problem which searches for a math-
ematical expression y = x4 + x3 + x2 + x, where x is an integer uniformly and
randomly generated from the range of [0, 20). The fitness used is the hit count
which is incremented by one if the difference between the program output and
the correct result is larger than a predefined threshold. The second problem is
to discover the even-5-parity expression, ¬(a ⊕ b ⊕ c ⊕ d ⊕ e). The training cases
are all the 25 combinations of the 5 binary variables. The fitness is calculated
as the sum of the wrong results produced by the individual program. The third
problem is the artificial ant on the Santa Fe Trail. Executing the problem solu-
tion repeatedly enables the ant to eat all the 89 food pellets on the trail within
400 steps. The number of the food not eaten by the ant is used as the fitness.
The fourth problem is boolean 11-multiplexer. Among the 11 variables, three
are used as the address to select the output from one of the other 8 variables.
However, GP has no idea of which ones are the address. Similar to even-5-parity,
the training cases are all the 211 combinations of the 11 binary variables, and
the fitness is the number of incorrect output.

Table 1 lists the parameter setting in the experiments. IMGP has no pop-
ulation, but for convenient comparison with the canonical GP, we refer to the
number of the individuals evaluated between matrix shuffles (generations) as
the population size, i.e. P. Please note that in Artificial Ant and 11-Multiplexer,
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Table 1. The Experiment Settings

Parameters Symbol Regression Even-5-Parity Artificial Ant 11-multiplexer
Terminals {x} {a,b,c,d,e} {move,left,right} {a,b,...,k}
Functions {+,-,*,/} {and,or,nand,nor} {if,progn2,progn3} {if,and,or,not}
Population 500 1000 2000 4000

Matrix Width 40 405 90 150
Matrix Height 63 1023 1093 3280
Generations 100 100 100 100
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Fig. 4. The result for x4+x3+x2+x
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Fig. 5. The result for ¬a⊕b⊕c⊕d⊕e
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Fig. 6. The result for Artificial Ant
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Fig. 7. The result for 11-multiplexer

some functions require 3 arguments, which means the maximum arity of the
program tree is 3 in stead of 2. Therefore, their matrix heights and hs-expression
lengths increase to 3D+1−1

2 .
We use lilgp[11] as the canonical tree-based GP system. For fair comparison,

the Ephemeral Random Constant(ERC) is removed from lilgp. The maximum
number of generations is 100. The tournament size is 2 as in IMGP. The other
parameters of lilgp are set according to [1]. Both lilgp and IMGP use the same
random seeds, which themselves are randomly generated. Figs. 4, 5, 6 and 7
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Table 2. t-test compares the results of canonical GP and IMGP on the 4 problems.
t is the t-statistic of the difference between the means of the results of canonical GP
and IMGP. P is the probability that the actual means of their results in a number of
runs are the same

Symbol Regression Even-5-Parity Artificial Ant 11-multiplexer
t 1.8283 4.7019 13.7893 12.1930
P 0.0415 2.23 × 10−5 2.57 × 10−16 5.27 × 10−15

are the experiment results for the 4 problems, which plot the fitness of the best
individuals from generation 1 to generation 100. The results are averaged over
20 independent runs.

In symbol regression, IMGP finds the solution in all the 20 runs compared
with 17 successful runs in lilgp. In terms of the average fitness of the best indi-
viduals, IMGP also converges faster than lilgp. In Even-5-parity, IMGP finds the
solution in 3 runs, however, lilgp fails to find the solution in any of the 20 runs.
Regarding the convergence speed, IMGP also outperforms lilgp significantly as
its average best fitness is 2.4 while lilgp’s is nearly twice. In artificial ant, IMGP
finds 12 ants eating all the food pellets. lilgp cannot find any successful ant, and
its average fitness of its best individuals is 31.8, far from 0. In 11-multiplexer,
IMGP finds the perfect multiplexer for 13 times, while lilgp fails all the time.
And once again, IMGP’s average best fitness is much better than lilgp’s, although
their starting fitness in the first generation are almost the same.

To check the significance of the difference between the results produced by
the canonical GP and IMGP on the 4 problems, a t-test is performed. The test
result is reported in Table 2, which verifies that the results of IMGP are better
than those of the canonical GP.

6 Discussions

Rosca[4] and Poli & Langdon[5] introduce two schema theories for GP indepen-
dently. Their schema is a contiguous tree fragment starting from the tree root.
A tree can have only one instance of a certain schema and the position of the
schema is fixed. However, the “don’t care” symbol # in Rosca’s schema the-
ory represents a set of subtrees, while the “don’t care” symbol = is exactly one
tree node in Poli & Langdon’s schema theory. Figs. 8 and 9 illustrate these two
position schema theories.

In IMGP, an instruction’s fitness is averaged over the fitness of all the trees
containing it at the fixed position. Considering Rosca’s schema theory, we think
the fitness of and at the third row of the matrix is actually the fitness of the
schema (#, #, and,#, #), which has and as the root of the right subtree, whose
left and right subtrees can be anything except -1, as depicted in Fig. 10. Gener-
ally, the fitness of an instruction in row k of the matrix is the fitness of the order
1 schema with the instruction at the position k. This way, IMGP maintains the
fitness of all the order 1 schema.
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Fig. 8. Rosca Schema Fig. 9. Poli & Langdon Schema

Fig. 10. A Node Schema Fig. 11. A Subtree Schema

Additionally, an instruction has its best fitness together with its best subtree.
Suppose the function and at the third row of the matrix has its best left child
pointing to a, and the best right child pointing to b, then the best fitness of
and is actually the best fitness of the schema (#, #, and, a, b). Its root can be
any function, its left subtree can be anything except -1, and its right subtree is
(and,a,b), as depicted in Fig. 11. This way, IMGP is able to remember the best
fitness of the schema of order larger than 1.

According to the extraction criterion in section 4.1, if an instruction’s fitness
is better than the others’, which means its 1-order schema is better than the
other 1-order schema with different instructions at the same position, it will be
selected more often than the other instructions, i.e. more programs will sample its
schema. Similarly, if an instruction’s best fitness is much better than its average
fitness, this will not only increase the chance of selecting this instruction, but
if it is indeed selected, more trees will sample the schema containing its best
subtree. Therefore, although IMGP is unable to keep the information of all the
schema, it does evolve some of them, and use them to generate new individuals.

7 Conclusion

This paper has proposed a new tree-based genetic programming architecture to
evolve schema directly. Rather than gathering individuals to form the population,
IMGP extracts individuals from the instruction matrix, and stores the program
in a new hs-expression. The experiments have shown that IMGP is superior to
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the canonical GP on the problems tested in this papar. This makes us believe
IMGP is worthy of further research. We do have several ideas of improvement
in mind.

1. We intend to adaptively change its parameters during evolution so that a
general parameter setting can be used in different problems.

2. We plan to record the times that a specific instruction has been selected,
and select more often the rarely selected instruction.

3. We can keep in each row only one copy of each instruction, which remembers
multiple subtrees, so that the matrix size decreases greatly.
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Abstract. Computer games and simulations are commonly used as a basis for 
analysing and developing battlefield strategies. Such strategies are usually pro-
grammed explicitly, but it is also possible to generate them automatically via 
the use of evolutionary programming techniques. We focus in particular on the 
use of genetic programming to evolve strategies for a single defender facing 
multiple simultaneous attacks. By expressing the problem domain in the form 
of a ‘Space Invaders’ game, we show that it is possible to evolve winning 
strategies for an increasingly complex sequence of scenarios. 

1   Introduction 

In military contexts, implementing a defence strategy for an autonomous entity often 
involves highly complex computer programming. The ‘intelligence’ that must be built 
into such systems is often derived from detailed warfare simulation and the 
application of game theory. Indeed, it has long been recognised that there is an 
extensive overlap of true battlefield strategy with various forms of game playing. 

In many modern computer games, artificial intelligence techniques are extensively 
used to increase the sophistication of the behaviour of computer opponents, and to 
heighten the sense of reality of the game-playing experience [1]. Such techniques are 
usually programmed in by the game’s developers, but it is becoming increasingly 
apparent that evolutionary computation techniques may also have a role to play in this 
regard. Evolutionary programming has been used to evolve strategy for a large 
number of games, including chess [2], checkers [3], poker [4], Othello [5], and 
backgammon [6]. Many of these are board or card games involving the evolution of 
‘mini-max’ strategies [7], but there has also been work done on problem domains 
with more obvious militaristic connections, including air strike planning [8], pursuer-
evader scenarios [9], minesweeping [10], and missile firing [11,12].  

In general, however, much less research work has been done on evolving defence 
strategy for responding to multiple simultaneous enemies launching unpredictable 
attacks in real time. In our paper, we wish to take a closer look at some of the issues 
involved in evolving defence strategy via genetic programming. To achieve this we 
couch the problem in the form of the well-known arcade game Space Invaders. This 
game, one of the earliest and most successful computer games ever written, is 
deceptively simple in concept and yet frustratingly difficult to master. 
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For those not familiar with the game, the idea is that there is a lone defender at the 
bottom of the screen, and a large number of aliens who descend from the skies, 
dropping bombs as they move. The defender’s task is to shoot down all the aliens 
before they land, whilst avoiding being destroyed by the bombs. To achieve this, the 
defender has only three actions available: move left, move right, and fire a missile. 
However, protection may be sought beneath a number of fortifications until they too 
are destroyed. 

The simplicity of the game makes it an ideal subject for studying the potential for 
devising defence strategy via evolutionary programming. More specifically, the 
research question we wish to address is whether, through the use of genetic 
programming, we can evolve programs for the defender that will enable it to win sets 
of increasingly complex games. In the next section we will describe the experimental 
approach we have used in more detail. This is followed by a description of the 
experiments themselves and their outcomes, and then some concluding remarks. 

2   Experimental Approach 

The programs that we shall evolve in the following experiments are viewed as 
directing the behaviour of a single defender operating within a square ‘arena,’ as 
depicted in Fig. 1. The arena takes the form of a grid of cells; for simplicity, Fig. 1 
depicts this to be of size 10x10, although the experiments described here actually used 
an arena size of 20x20. 
     In evaluating the fitness of an individual, the program code is executed over a set 
of random tests (games). The number of such games is usually set at 50. For each test 
of a candidate program, the defender is placed randomly somewhere on the bottom 
row of the arena. The aliens materialise randomly anywhere in the top 6 rows, and are  

 

Fig. 1. Movement of entities within the battle arena 

initially travelling in a randomly-chosen direction. Each alien descends in a 
boustrophedon pattern, i.e. across the arena, down a row, across in the opposite 
direction, and so on. As the aliens travel, they may release bombs. Again for 
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simplicity, Fig. 1 shows a single alien and a single bomb, and also a missile that the 
defender has launched to attack the alien. Although there may be many bombs in the 
air simultaneously, there can be at most only one missile; the defender must wait until 
an existing missile hits an enemy or leaves the arena before it launches the next. 

The program code corresponding to a member of the population being evolved is 
built from the three primitives representing a move to the cell on the immediate left, a 
move right, and the firing of a missile, together with other primitives for all the 
decision-making associated with the strategy. A game advances in ‘steps.’ Execution 
of the left, right and fire primitives cause the game to move on by one step. The other 
nodes of a program tree – those corresponding to the decision making – are viewed as 
consuming negligible ‘thinking’ time, and do not cause a game step to be taken. 

In each game step, all aliens, bombs and missiles move ahead one cell in their 
respective directions of travel. As there are no looping constructs available in the 
programming primitives, each program is evaluated repeatedly until a game ends. To 
ensure progression of ‘think-only’ programs, i.e. those which do not employ any of 
the left, right or fire primitives, a game is also advanced by a step at the end of each 
program iteration. In general, a game ends when all aliens are destroyed, when an 
alien succeeds in landing, or when a bomb hits the defender (unlike the original 
arcade game, this defender gets no second chances !) 

In performing the following experiments, we have elected to use steady-state 
evolution. Candidates for both reproduction and deletion within the population are 
selected via tournament, acting on a sample size of 5. The population size is 500; this 
is initialised using the ‘ramped half-and-half’ method advocated by Koza [13], in 
which an equal number of program trees is randomly generated for each tree depth up 
to an initial maximum (6 in our case). For each set of trees of a given depth, half are 
generated ‘fully,’ i.e. all branches are of the same complete depth, and half are 
‘grown,’ i.e. branches may end in a terminal node before the set depth is reached. 
There are no duplicates in this initial population, although no attempt is made to 
identify or prevent them in subsequent generations. 

Evolution proceeds over 50 generations using the standard operators of crossover 
and fitness proportionate reproduction, selected probabilistically so that 90% of 
individuals are created via crossover. Crossover points are selected randomly, but 
with a distribution of 90% applied to function nodes and 10% applied to terminal 
nodes. Mutation was not used in these experiments. 

3   The Experiments 

3.1   Experiment 1 

The first experiment begins things simply, with the defender opposed by just a single 
alien. Moreover, the alien has no weapons, so that a game ends when it either 
manages to land or is hit by a missile. The terminal set for this experiment is as 
follows: 

{LEFT, RIGHT, FIRE, Y_DIST, X_DIST} 

The first two terminals in this set, LEFT and RIGHT, simply move the defender 
one cell in the appropriate direction, unless the defender is against the edge of the 
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arena that makes such movement impossible. FIRE launches a missile from the 
defender’s current coordinates, unless a missile is already in the air. Execution of 
LEFT, RIGHT and FIRE nodes during fitness evaluation all cause the game to be 
advanced one step, and all three nodes return a zero result to the tree evaluation 
function. Y_DIST returns the current vertical distance of the alien above ‘ground 
level’ and X_DIST returns its horizontal distance from the defender. The value of 
X_DIST is positive if the alien is currently approaching the defender, negative if it is 
receding. 

The function set for the experiment looks like this: 

{IF, EQ, PROGN2, PROGN3} 

The IF function takes three arguments and is defined as:  

if <arg1> then <arg2> else <arg3> 

The EQ function evaluates its 2 arguments and tests them for equality, returning 1 
if the results are the same and zero otherwise. PROGN2 and PROGN3 are 
connectives, as used in problems such as the Santa Fe artificial ant trail [13]. They 
simply cause each of their sub-tree arguments to be evaluated in turn, PROGN2 
having two arguments and PROGN3 having three. PROGN2, PROGN3 and the IF 
function all return a zero result when executed. 

The next problem to consider is how to define the fitness metric. Since the primary 
aim of the defender is to shoot down the alien, we can define fitness in terms of how 
close the defender’s missiles come to hitting the alien. When a missile achieves the 
same Y-axis value as the alien, the distance considered is the absolute difference in 
their X-coordinates. The best of these measurements forms the value recorded for that 
game. This means that, if the defender manages to score a direct hit with any one of 
its missiles during a game, the score for that game is zero. A non-zero value at the end 
of the game indicates that none of the missiles hit their target, and the alien managed 
to land. These values are then summed over the 50 games to give a final fitness score. 
It follows that this score will be zero only if all games are won by the defender. 

In executing the GP system for this initial problem, it was found that it was not 
difficult to evolve solutions. Almost every run led to a solution, usually within a 
handful of generations. It was also found that the winning strategies that generally 
appeared involved firing missiles as often as possible, whether on-target or not. Part 
of the reason for this is that, as long as one of the missiles hits the alien, it does not 
matter where the others go. If a kill is achieved, the shots that go wide will not affect 
the perfect game score of zero. 

However, it is not sufficient merely to stand still and fire repeatedly. Programs 
which did this let too many aliens slip through to ground level. Rather, a successful 
strategy involves firing coupled with movement. Most of the zero-fitness programs 
achieved this by gradually migrating to the left or right edge of the arena, and then 
firing continually from there. The reason for this seems to be that the leftmost and 
rightmost columns are the only ones in which the alien performs any vertical motion, 
and the extra time spent lingering in those columns while the descent is achieved 
seems to improve the defender’s chances of a direct hit. The following 41-node 
solution is one that works in such a way. It moves to the right edge, and then fires 
repeatedly from there, occasionally jumping one cell to the left and back again: 
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PROGN3 ( IF ( IF ( LEFT RIGHT X_DIST ) PROGN3 ( FIRE RIGHT RIGHT ) 
EQ ( RIGHT RIGHT ) ) PROGN2 ( IF ( FIRE PROGN3 ( EQ ( X_DIST EQ  RIGHT 
(RIGHT ) ) IF ( FIRE RIGHT LEFT ) PROGN3 ( LEFT LEFT LEFT ) ) RIGHT ) IF 
(RIGHT LEFT Y_DIST ) ) EQ ( Y_DIST IF ( RIGHT LEFT FIRE ) ) ) 

In an attempt to encourage solutions in which accurate aiming would become more 
of a priority, we made a small alteration to the fitness metric. Instead of basing the 
fitness score on the best missile proximity of a game, we tried basing it on the 
proximities of all the shots fired. In this modified version of the experiment, any 
misses whatsoever lead to a non-zero fitness, so that zero (optimal) fitness is achieved 
only if each and every missile hits its target. We also alter our termination criterion so 
that success is defined in terms of the number of kills, rather than zero fitness. This 
means that a run is judged successful if it evolves a program that wins all 50 games. 
This ‘best’ program may or may not have zero fitness. The situation is similar to that 
used in, for example, symbolic regression problems, where the best program is often 
regarded as the one which scores the most matches of inputs to outputs, even though 
the overall error term representing its fitness value may be worse than that of other 
population members. Finally in this modified version of the experiment, we also 
introduce an additional penalty (200 points) to be added to the score each time an 
alien manages to land. 

As before, little computational effort was required to evolve solutions, and 
approximately 90% of these were of the ‘rapid-fire’ type seen previously. The other 
10%, however, were much more considered in their shooting strategies, preferring to 
wait until the enemy was in range before firing a missile. The following 20-node 
solution is one such ‘aimer’: 

IF ( EQ ( Y_DIST X_DIST ) PROGN3 ( FIRE LEFT X_DIST ) IF ( PROGN3  
(PROGN3 ( Y_DIST Y_DIST RIGHT ) LEFT PROGN2 ( LEFT LEFT ) ) Y_DIST 
Y_DIST ) ) 

Execution of this program causes the defender to migrate to the left edge of the 
arena, from where it fires only when it calculates that a direct hit is possible. The 
decision is based on the X and Y distances of the alien from the defender. 

3.2   Experiment 2 

In this experiment, the alien fights back! It is now given the ability to drop a bomb 
when it is directly above the defender. However, only one bomb can be in the air at a 
time. This bomb moves down one cell each time the game advances, moving in 
lockstep with the alien, any missile, and possibly the defender. The defender cannot 
shoot down a bomb; it can only move out of its way. To assist it in identifying when it 
needs to do this, the terminal set is expanded slightly: 

{LEFT, RIGHT, FIRE, Y_DIST, X_DIST, ATTACKED} 

The ATTACKED terminal returns 1 if the defender is directly below a bomb, zero 
otherwise. We also impose a penalty of 200 points if the defender is hit by a bomb. 

This experiment was tried with each of the two approaches to fitness evaluation 
described for the previous experiment. Using the ‘best proximity’ approach, in which 
only the closest shot in a game counts towards the final score, it proved very difficult 
to evolve solutions. In one set of 100 runs, only 5 of those runs resulted in solutions. 
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The lack of accuracy inherent in the ‘rapid-fire’ approach coupled with the newly-
introduced need to spend time dodging the enemy bombs usually resulted in the 
defender being killed first or the alien landing. 

The ‘all-missile’ approach, in which the proximity of each and every missile 
counts towards the fitness score, resulted in a much better performance, with a 
success rate of 33% in one set of 100 runs. In one run, the following 46-node solution 
was produced in generation 26: 

IF ( EQ ( IF ( IF ( EQ ( IF ( ATTACKED ATTACKED Y_DIST ) EQ ( X_DIST 
Y_DIST ) ) LEFT EQ ( EQ ( X_DIST Y_DIST ) ATTACKED ) ) RIGHT LEFT ) EQ 
( X_DIST Y_DIST ) ) PROGN2 ( PROGN2 ( RIGHT Y_DIST ) EQ ( IF  
(ATTACKED IF ( LEFT RIGHT LEFT ) EQ ( X_DIST Y_DIST ) ) EQ ( X_DIST 
Y_DIST ) ) ) EQ ( ATTACKED PROGN3 ( FIRE ATTACKED RIGHT ) ) ) 
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 Fig. 2. Fitness graph for Experiment 2 

Monitoring of the execution of this program reveals that it avoids bombs by 
repeatedly performing little ‘dances’ that involve taking two steps to the left and then 
one step to the right. The graph of Figure 2 shows how the best fitness and average 
fitness of the population changed during the evolution of this particular program. 

3.3   Experiment 3 

This experiment is similar to the previous one, in that there is still just a single alien 
and defender, but the alien is now capable of dropping a lot more bombs. As before, 
the alien will tend to drop a bomb when directly above the defender, but it will also 
drop other bombs at random on each pass across the arena. Within the GP system, the 
maximum number of bombs in the air at any point is controlled by a parameter 
MAX_BOMBS. Another restriction is that bombs cannot share the same X 
coordinate, i.e. only one bomb can be present in each column of the arena. 

In performing this experiment we abandoned the ‘best proximity’ approach to 
measuring fitness, which performed so poorly in the previous experiment. Using the 
‘all missiles’ approach instead, we were able to evolve programs that could cope with 
large numbers of bombs. In one set of runs, for example, we found that it was possible 
to evolve programs that could cope with MAX_BOMBS set to 10, i.e. with up to half 
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the sky containing bombs. In one such run, the following 19-node program evolved in 
generation 35: 

IF ( ATTACKED PROGN2 ( ATTACKED LEFT ) IF ( EQ ( X_DIST Y_DIST ) 
     IF ( EQ ( X_DIST Y_DIST ) IF ( Y_DIST FIRE X_DIST ) Y_DIST ) X_DIST ) ) 

In executing this strategy, the defender moves as little as possible – enough to 
evade the bombs. It does this as soon as a bomb appears above it, while the bomb is 
still high in the air. This gives the defender time to check if it is still in danger after 
moving, so that it can take further evasive action if required. As soon as the enemy 
comes into range, the defender launches a missile to bring it down. 

3.4   Experiment 4 

In this final experiment, we take a step closer to the original game by introducing 
multiple aliens. A consequence of this is that the function set (F) and terminal set (T) 
are altered as follows: 

T = {LEFT, RIGHT, FIRE, ATTACKED, TARGET_LEFT, TARGET_RIGHT} 
F = {IF, PROGN2, PROGN3} 

It will be seen that the tokens X_DIST, Y_DIST and EQ have all been removed 
from these sets. The existence of the first two of these in particular no longer makes 
any sense, since they refer to a single alien, and we now have many. Moreover, their 
primary purpose was to enable the evolution of exact targeting, and it has already 
been demonstrated in the previous experiments that such an ability can be readily 
evolved. 

In their place we now have TARGET_LEFT and TARGET_RIGHT. These 
terminals return 1 if a missile launched from one place to the defender’s left/right at 
the present time would lead to a better shot (i.e. closer proximity to any alien) than 
one launched from the current position; otherwise they return zero. These primitives 
act only as ‘hints’ as to how to move in order to improve the chances of a missile 
launch being on target, since they take no account of the time-consuming steps that 
may be associated with the other nodes of the program tree. By the time the defender 
has physically moved to a new position that it calculates to be better, the game may 
have advanced several steps and the aliens will all have changed positions. This 
makes life more difficult for the defender, but it may also encourage the evolution of 
strategies that involve more proactive ‘pursuit’ of the invaders. 

The effort involved in evolving solutions to this problem is obviously affected by 
the value of MAX_BOMBS, and by a new parameter MAX_ALIENS. A useful 
metric here is provided in Koza’s definition of computational effort [13], which 
calculates the minimum number of individuals that need to be processed in order to 
attain a probability of 0.99 that a solution will be evolved for a given population size. 
If MAX_BOMBS and MAX_ALIENS are both set to 3, for example, the success rate 
over 100 runs is 47%, and the computational effort required turns out to be 58,500 
individuals, representing 13 runs to generation 8. If MAX_BOMBS and 
MAX_ALIENS are each increased to 5, the success rate degrades to 12%, while  
the computational effort jumps to 675,000 individuals (75 runs to generation 17). 
Figure 3 depicts the changes in best and average fitness during the evolution of one of 
these latter programs over 26 generations. 
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 Fig. 3. Fitness graph for Experiment 4 

For most of the solutions produced, movement of the defender is usually associated 
with dodging the bombs that rain down. However, when the bombs are very few in 
number, these evasion tactics become less important, while the need to destroy the 
aliens before they land becomes more so. In such scenarios,  the pursuit strategy 
mentioned earlier may become apparent, with the defender attempting to place itself 
in optimum positions for ensuring the accuracy of its missiles. 

4   Conclusions 

It has been shown that by using genetic programming it is possible to evolve defence 
strategies to cope with battle games of significant difficulty. Such strategies 
incorporate many of the aspects of evasion, pursuit and targeting behaviour found in 
human game players. It has also been interesting to see the evolution of individuals 
exhibiting varying forms of game strategy, such as the ‘rapid-firers’ and the ‘aimers.’ 

Although the individuals that satisfy the termination criteria of a run are often 
referred to in this paper as ‘solutions,’ this is in fact a slight exaggeration of the truth. 
To be accurate, what these programs represent are defence strategies that have 
demonstrated their ability to win a sequence of 50 consecutive random games. It is 
sometimes found that such programs can and do lose games when tested further; 
however, experimentation suggests that the 50 game test sequence is sufficient to 
promote fairly good generality. For example, the ‘solutions’ produced in Experiment 
4, with MAX_BOMBS and MAX_INVADERS both set to 3, were further tested in 
another sequence of 50 games that had not been used as a ‘training set’ during the 
evolutionary process. It was found that, on average, 45 of these 50 games could still 
be won, and that 10% of the programs won all of these 50 additional games. It would 
of course be possible to increase confidence in the robustness of strategies by simply 
raising the number of tests performed during fitness evaluation; this has to be 
balanced against the additional computational expense incurred. 

As we have moved through the series of experiments described above, we have 
gradually increased the level of sophistication of the games. Future plans are to see 
how much further this can be taken. An obvious future addition is the inclusion of 
buildings behind which the defender can seek refuge. We would also like to 
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investigate the effects of heightening the sensory and decision-making powers of the 
defender. One way of achieving this would be to endow it with the ability to sense the 
distance of bombs, and not just their mere presence, so that it might be able to make 
more informed decisions about exactly when it should dodge an approaching bomb. 
Another way might be to allow it somehow to analyse the positions of all the aliens 
simultaneously and assign priorities to them, so that perhaps the most threatening 
enemies are eliminated first. Yet another suggestion is to endow the aliens with more 
sophisticated strategies, perhaps to be co-evolved with those of the defender. 

Finally, it should be noted that, since fitness evaluation of the strategies being 
evolved essentially involves execution of a set of games from start to finish, it is 
possible to bolt a simple visual interface onto the fitness function to view these 
games. This was in fact done in the experiments described above, providing a 
fascinating insight into defence strategies created entirely without explicit human 
programming. A screen-shot of one of the games being played out for a solution 
evolved in Experiment 4 is shown in Figure 4. 

 

Fig. 4. Visual interface to the GP system during fitness evaluation 

References 

1. Laird, J.E.: Research in Human-Level AI Using Computer Games. Communications of the 
ACM 45(1) (2002) 32-35 

2. Gross, R., Albrecht, K., Kantschik, W., Banzhaf, W.: Evolving Chess Playing Programs. 
In: Langdon, W.B. et al (eds.): GECCO 2002. Morgan Kaufmann, San Francisco, CA 
(2002) 740-747 

3. Chellapilla, K., Fogel, D.B.: Evolving an Expert Checkers Playing Program without Using 
Human Expertise. IEEE Trans. on Evolutionary Computation 5(4) (2001) 422-428 

4. Kendall, G., Willdig, M.: An Investigation of an Adaptive Poker Player. In: 14th Australian 
Joint Conf. on Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol. 2256. 
Springer-Verlag, Berlin Heidelberg (2001) 189-200 



290 D. Jackson 

 

5. Eskin, E., Siegel, E.V.: Genetic Programming Applied to Othello: Introducing Students to 
Machine Learning Research. In: Proc. 30th Technical Symposium of the ACM Special 
Interest Group in Computer Science Education (SIGCSE), New Orleans, LA, USA (1999) 
242-246 

6. Pollack, J., Blair, A.D., Land, M.: Coevolution of a Backgammon Player. In: Langton, 
C.G. and Shimohara, K. (eds.): Artificial Life V: Proc. 5th Int. Workshop on the Synthesis 
and Simulation of Living Systems, MIT Press, Cambridge, MA, USA (1996) 92-98 

7. Koza, J.R.: Genetic Evolution and Co-Evolution of Game Strategies. In: International 
Conf. on Game Theory and its Applications, Stony Brook, New York (1992)  

8. Miles, C., Louis, S.J., Cole, N.: Learning to Play Like a Human: Case Injected Genetic 
Algorithms Applied to Strategic Computer Game Playing. In: Congress on Evolutionary 
Computation (CEC 2004), Portland, Oregon, USA (2004) 

9. Moore, F.W., Garcia, O.N.: A Genetic Programming Approach to Strategy Optimization in 
the Extended Two-Dimensional Pursuer/Evader Problem. In: Koza, J.R. et al (eds.): 
Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan 
Kaufmann, San Francisco, CA, USA (1997) 249-254 

10. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT 
Press, Cambridge, MA, USA (1994) 

11. Moore, F.W.: A Methodology for Missile Countermeasures Optimization under 
Uncertainty. Evolutionary Computation 10(2). MIT Press, Cambridge, MA, USA (2002) 
129-149 

12. Nyongesa, H.O.: Generation of Time-Delay Algorithms for Anti-air Missiles using 
Genetic Programming. In: Boers, E.J.W. et al (eds.): EvoWorkshop 2001, Lecture Notes in 
Computer Science, vol. 2037. Springer-Verlag, Berlin Heidelberg (2001) 243-247 

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of 
Natural Selection. MIT Press, Cambridge, MA (1992) 



Extending Particle Swarm Optimisation via
Genetic Programming

Riccardo Poli, William B. Langdon, and Owen Holland

Department of Computer Science, University of Essex, UK

Abstract. Particle Swarm Optimisers (PSOs) search using a set of in-
teracting particles flying over the fitness landscape. These are typically
controlled by forces that encourage each particle to fly back both to-
wards the best point sampled by it and towards the swarm’s best. Here
we explore the possibility of evolving optimal force generating equations
to control the particles in a PSO using genetic programming.

1 Introduction

The class of complex systems sometimes referred to as swarm systems is a rich
source of novel computational methods that can solve difficult problems effi-
ciently and reliably. When swarms solve problems in nature, their abilities are
usually attributed to swarm intelligence; perhaps the best-known examples are
colonies of social insects such as termites, bees and ants. In recent years it has
proved possible to identify, abstract and exploit the computational principles
underlying some forms of swarm intelligence, and to deploy them for scientific
and industrial purposes. One of the best-developed techniques of this type is
Particle Swarm Optimisation (PSO) [9].

In PSOs, which are inspired by flocks of birds and shoals of fish, a number
of simple entities — the particles — are placed in the parameter space of some
problem or function, and each evaluates the fitness at its current location. Each
particle then determines its movement through the parameter space by combin-
ing some aspect of the history of its own fitness values with those of one or more
members of the swarm, and then moving through the parameter space with a
velocity determined by the locations and processed fitness values of those other
members, along with some random perturbations. The next iteration takes place
after all particles have been moved. Eventually the swarm as a whole, like a flock
of birds collectively foraging for food, is likely to move close to the best location.

This simple model can deal with difficult problems efficiently. Naturally, dif-
ferent variations of the basic recipe have been tried and compared to existing
techniques and different application areas have been investigated. However, the
situation overall is still as it was in 2001 when Kennedy and Eberhart wrote:
“...we are looking at a paradigm in its youth, full of potential and fertile with
new ideas and new perspectives...Researchers in many countries are experiment-
ing with particle swarms...Many of the questions that have been asked have not
yet been satisfactorily answered.”[9]

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 291–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This research is part of a project that aims to systematically explore the ex-
tension of particle swarms by including strategies from biology, by extending the
physics of the particles, and by providing a solid theoretical and mathematical
basis for the understanding and problem-specific design of new particle swarm
algorithms. In this paper, in an effort to extend PSO models beyond real biol-
ogy and physics and push the limits of swarm intelligence into the exploration
of swarms as they could be, we study the possibility of evolving, through the use
of genetic programming (GP) [10, 12], the force generating equations to control
the particles in a PSO. This gives us a methodology for routinely “inventing”
specialised PSOs which are near-optimum for specific domains. Our aim is to
verify the feasibility of this approach and to understand, through the analysis of
the evolved components, what types of PSOs are best for different landscapes.

Section 2 provides a review of the work to date on particle swarms, while
Section 3 describes how to use GP to automatically generate PSO tailored to
particular tasks. The results section (4) is followed, in Section 5, by a brief
restatement of our findings and future direction.

2 Particle Swarm Optimisation

The initial ideas of James Kennedy (a social psychologist) and Russ Eberhart
(an engineer and computer scientist) were essentially aimed at producing compu-
tational intelligence by exploiting simple analogues of social interaction, rather
than purely individual cognitive abilities. Their 1995 simulations, influenced by
Heppner’s work [7], involved analogues of bird flocks searching for corn. Their
continuing emphasis on the social nature of intelligence, even in humans, can be
seen in their book, Swarm Intelligence [9].

In the simplest (and original) version of PSO, each particle is moved by two
elastic forces, one attracting it with random magnitude to the fittest location so
far encountered by the particle, and one attracting it with random magnitude
to the best location encountered by any member of the swarm.1 Suppose we are
dealing with an N dimensional problem. Each particle’s position, velocity and
acceleration, can each be represented as a vector with N components (one for
each dimension). Starting with the acceleration vector, a = (a1, · · · , aN ), each
component, ai, is given by

ai = ψ1R1(xsi
− xi) + ψ2R2(xpi

− xi)

where xsi
is the ith component of the best point visited by the swarm, xi is

the ith component of the particle’s current location, xpi is the ith component of
its personal best, R1 and R2 are two independent random variables uniformly
distributed in [0,1] and ψ1 and ψ2 are two learning rates. ψ1 and ψ2 control the
relative proportion of cognition and social interaction in the swarm. The same
formula is used independently for each dimension of the problem.

1 Here we limit ourselves to the case where particles can socially interact freely. More
general models constrain inter-particle interactions via a neighbourhood structure.
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The velocity of a particle v = (v1, · · · , vn) and its position are updated every
time step using the equations:

vi(t) = vi(t − 1) + ai xi(t) = xi(t − 1) + vi(t)

This system can lead the particles to become unstable, with their speed increas-
ing without control. This is harmful to the search and need to be controlled. The
standard technique is to bound velocities so that vi ∈ [−Vmax, +Vmax].

Early variations in PSO techniques involved the addition of analogues of phys-
ical characteristics to the members of the swarm, such as the “inertia weight” ω
[17], where the velocity update equation is modified as follows:

vi(t) = ωvi(t − 1) + ai

In vector notation, the velocity change can be written as Δv = a − (1 − ω)v.
That is, the constant 1 − ω acts effectively a friction coefficient.

Following Kennedy’s graphical examinations of the trajectories of individual
particles and their responses to variations in key parameters [8] the first real
attempt at providing a theoretical understanding of PSO was the “surfing the
waves” model presented by Ozcan [14]. Shortly afterwards, Clerc developed a
comprehensive 5-dimensional mathematical analysis of the basic PSO system [5].
A particularly important contribution of that work was the use and analysis of
a modified update rule:

vi(t) = κ(vi(t − 1) + ai)

where the constant κ is called a constriction coefficient. If κ is correctly chosen,
it guarantees the stability of the PSO without the need to bound velocities.

More recently, there have been further explorations of physics-based effects
in the swarm. For example, Blackwell has investigated quantum swarms [3] and
charged particles [2], and Poli and Stephens have proposed a scheme in which
the particles do not “fly above” the fitness landscape, but actually slide over it
[15]. Krink and collaborators have looked at a range of modifications of PSO,
including ideas from physics (spatially extended particles [11], self-organised
criticality [13]) and biology (e.g. division of labour [16]). Finally, there has also
been cross-fertilisation between PSOs and evolutionary computing. For example,
Angeline [1] introduced selection and Brits et al. [4] have explored niching.

3 Evolution of PSOs via Genetic Programming

In the original PSO and well as in most improvements proposed in the literature
(see previous section), the equation controlling the particles is of the form:

ai = F (xi, xsi
, xpi

, vi)

for some function F . Our approach to explore the space of possible PSOs is to
use GP to evolve the function F so as to maximise some performance measure.
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Clearly, we cannot expect to be able to evolve a PSO that can beat all other
PSOs on all possible problems [18]. We should, however, be able to evolve PSOs
that can outperform known PSOs on specific classes of problems of interest.

Evolving specialised search algorithms is typically a heavy computational
task. So, a very efficient implementation of both PSO and GP were required for
this work. Since nothing particularly fancy is required of the GP environment
(except efficiency), we used a small and highly efficient C implementation of GP.
For efficiency, we implemented our own minimalist PSO engine in C. This has
to be compact and efficient in that it is invoked multiple times and for many
time steps during the fitness evaluation of each GP program.

The function set for GP included the functions +,−,× and the protected di-
vision DIV. I.e. if |y| <= 0.001 DIV(x, y) = x else DIV(x, y) = x/y. The terminal
set included the coordinate of a particle xi, the corresponding component of the
velocity vi, the coordinate of the best point visited by the particle xpi

, the coor-
dinate of the best point visited by the swarm xsi

, the numerical constants 1.0,
-1.0, 0.5, -0.5, and finally a zero-arity function R which returns random numbers
uniformly distributed within the range [−1, 1].

In order to evolve PSOs that are able to solve a class of problems as opposed
to just one problem, we need to build a fitness function which uses the program
being evaluated as the F function in a PSO, and evaluates the performance of
the resulting PSO on a training set of problems taken from the given class.

In our study we considered two classes of benchmark problems, the city-
block sphere problem class and the Rastrigin’s problem class, of two different
dimensions, N = 2 and N = 10. Problem instances from the city-block sphere
class have the following form:

f(x) =
N∑

i=1

|xi − ci|.

Every city-block problem has a single global optimum (at x = (c1, . . . , cN ),
where f(x) = 0) and no local optima. Problem instances from the Rastrigin’s
class have the following form:

f(x) = 10N +
N∑

i=1

(
(xi − ci)2 − 10 cos(2π(xi − ci))

)
This has many local optima and one global optimum x = (c1, . . . , cN ) with
f(x) = 0.

At the beginning of each GP run, 10 random problems were generated from
the chosen class of functions (either the city-block sphere or the Rastrigin func-
tion class) by choosing the values ci uniformly at random from the range [−1, 1].
To limit the computational load of the simulations, during fitness evaluation we
used PSOs with 10 particles and run them for only 30 iterations on each of the
10 problems. The initial coordinates for the particles were drawn uniformly at
random from the interval [−5, 5]. Since performance can vary substantially with
the initial random position of the particles, for each problem the PSO was run 5
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times with different initial random positions for the 10 particles. Initial particle
velocity is 0. To ensure stability we updated velocities using Clerc’s update rule
(see previous section), using a constriction factor κ = 0.7. We also clipped the
components vi of particle velocities within the range [−2.0, +2.0].

In each of the 10×5 = 50 training cases, the performance of the PSO needs to
be evaluated. More than one performance measure could be used. For example,
if one wanted to encourage the convergence of the swarm at the global optimum,
performance could be evaluated as the sum of the distances between the global
optimum and each particle at the end of the 30 PSO iterations. If one is only
interested in the ability of the PSO to find the global optimum, then the distance
between the swarm best and the global optimum at the end of the PSO iterations
should be used as a performance measure. If one does not care about global
optima, but is only interested in achieving good values of the objective function,
then the difference between the best objective function value observed in a PSO
run and the objective function value at the global optimum could be used as a
performance measure. Fitness functions that encourage the swarm not to collapse
onto the swarm best could be defined for dynamic problems which require the
ability to track moving optima. And so on.

We experimented with two fitness functions: a) we measured and accumulated
(over 50 fitness cases) the (city-block) distance between the swarm best and the
global optimum at the end of each PSO run∑

i

|xsi
− ci|

and b) we measured and accumulated (over 50 fitness cases and 10 particles) the
(city-block) distance between each particle’s position and the global optimum at
the end of each PSO run ∑

x

∑
i

|xi − ci|

The negation of either (a) or (b) minus a parsimony pressure term (see below)
was returned as the fitness of the GP program controlling the PSO.

In the GP system we used steady state binary tournaments for parent selec-
tion and binary negative tournaments to decide who to remove from the popu-
lation. The initial population was created using the “grow” method with max
depth of 6 levels (the root node being at level 0). We used population sizes of
1000 and 5000 individuals. We used 90% standard sub-tree crossover (with uni-
form random selection of crossover points) and 10% point mutation with a 2%
chance of mutation per tree node. Runs were terminated either manually when
fitness appeared to be sufficiently good or automatically at generation 100. To
favour readability and understandability of the evolved solutions, a mild parsi-
mony pressure (parsimony coefficient=0.01) was applied to the fitness function
to encourage the evolution of a simpler F .
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4 Results

In order to be able to evaluate the PSOs produced by GP, we compared them
with a number of human-designed update rules, most of which have previously
appeared in the literature. The update rules included:

PSO a version of the standard PSO where ψ1 = ψ2 = 1.0, that is

F = R1(̇xpi − xi) + R2(̇xsi − xi)

PSOD1 a deterministic (no random coefficients) 100% social version (ψ1 = 0,
ψ2 = 1) of the standard PSO:

F = (xsi
− xi)

PSOR0 a PSO controlled by random forces

F = 2.0Ṙ − 1.0

PSOR1 a 100% social (ψ1 = 0, ψ2 = 1) version of the standard PSO

F = R(̇xsi
− xi)

In our GP runs we evolved several high performance PSOs. Three of the most
interesting ones are:

PSOG1 was evolved when the training set was the shifted city-block sphere
functions of dimension N = 2, and so it was expected to perform well on uni-
modal objective functions:

F = (xsi
− xi) − (viṘ)

This is particularly interesting since it includes a deterministic, 100% social
component as well as a random friction component.

PSOG2 was also evolved when the training set included shifted city-block
sphere functions of dimension N = 2. Its equation is equivalent to

F = 0.5 ((xsi
− xi) + (xpi

− xi) − vi)

This is interesting because it is completely deterministic (particles are attracted
towards the middle between swarm best and particle best) and because it in-
cludes standard friction.

PSOG3 was evolved when the training set included shifted Rastrigin functions
of dimension N = 2, and so it was expected to perform well on highly multimodal
objective functions. Its equation is equivalent to:

F = R1(xsi − xi) − 0.75R2R1xix
2
si

− 0.25R3R2R1xixsi
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Table 1. City Block Sphere. Normalised mean (standard deviation) of the distance
between best location found by each PSO and global optima. Best results in bold

N C PSO PSOD1 PSOR0 PSOR1 PSOG1 PSOG2 PSOG3
2 1 .046 (.089) .002 (.0002) .26 (.029) .003 (.0003) .001 (.0016) .048 (.014) .01 (.007)
2 2 .054 (.093) .002 (.0002) .27 (.036) .003 (.0004) .001 (.0019) .066 (.029) .04 (.028)

10 1 .52 (.47) .31 (.025) 1.6 (.021) .27 (.022) .45 (.025) .65 (.023) .17 (.037)
10 2 .62 (.45) .38 (.028) 1.6 (.036) .31 (.027) .55 (.045) .8 (.056) .45 (.096)

Table 2. Rastrigin. Normalised mean (standard deviation) of the distance between
best location by each PSO and global optima. Best results in bold

N C PSO PSOD1 PSOR0 PSOR1 PSOG1 PSOG2 PSOG3
2 1 .66 (.22) .81 (.081) .77 (.072) .64 (.072) .94 (.084) .72 (.07) .28 (.066)
2 2 .71 (.2) .85 (.098) .79 (.066) .66 (.091) .94 (.12) .75 (.12) .47 (.16)

10 1 1.2 (.35) 1.3 (.05) 1.9 (.042) 1.3 (.07) 1.3 (.055) 1.1 (.054) .59 (.057)
10 2 1.4 (.28) 1.4 (.073) 1.9 (.049) 1.4 (.064) 1.4 (.079) 1.3 (.063) .94 (.11)

This is interesting for a number of reasons. Firstly, it does not use information
about each particle’s best. Probably this is because, in a highly multimodal
landscape, particles should not trust their own observations too much. Their
personal best is likely to belong to the basin of attraction of a deceptive local
optimum. The swarm best, instead, has a higher chance of being in the basin of
attraction of the global optimum, and so particles should aim at exploring its
surroundings. PSOG3’s second term is also interesting. Unless the swarm best
is near the origin, this component will tend to push the particles towards the
origin. The push is very mild if the swarm best is not too far from the origin,
but it becomes quite strong otherwise. Clearly, the reason why this component
is useful is that GP has found a regularity in the training set: global optima tend
to be near the origin, and so that is an area of the search space that should be
explored preferentially.

In order to compare the behaviour of the hand-designed and evolved PSOs,
we tested them on 30 random problems taken from the city-block sphere and
Rastrigin function classes for two and ten dimensions. The problems were gener-
ated by selecting the components of the global optimum ci uniformly at random
from the interval [−C,+C], with C = 1.0 and C = 2.0. Note that PSOG1 and
PSOG2 were evolved using the city-block sphere problem class, N = 2 and
C = 1.0, and that PSOG3 was evolved using the Rastrigin function problem
class, N = 2 and C = 1.0. Thus, all other conditions represent off-sample test
problems and are useful to assess the generalisation capabilities of these PSOs.

For each problem instance we performed 30 independent runs of each PSO.
The results are reported in Tables 1 and 2. The tables show the average over
the 30 problems and the standard deviation (in brackets) of the mean (over
30 independent runs) absolute error between the coordinates of the swarm best
and the coordinates of the global optimum (i.e.,

∑
i |xs − ci|/N) at the end of
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30 PSO iterations. This gives an idea of how far the swarm best was from the
global optimum in each dimension. Data in boldface represent the PSO with the
best average performance in each condition.

On the two-dimensional city block sphere problem class, all PSOs do quite
well, with the exception of PSOR0 which cannot really be expected to do very
well on unimodal functions. PSOG1 is better than the standard PSO. However,
to our surprise also PSOG3 (which wasn’t evolved on sphere functions) does
better than the standard PSO (and in fact is even better than PSOG1 for ten
dimensions), suggesting PSOG3 may be a good all-rounder. On the Rastrigin
function problem class, PSOG3 outperforms all other PSOs by a considerable
margin. In ten dimensions PSOG2 is second best, while in two dimensions
PSOR1 is second best. In other tests (not reported) where each PSO was run
for 300 iterations instead of 30, we obtained essentially the same results.

It is interesting to compare the behaviour of PSOG3 and PSO. Figure 1
illustrates the behaviour of PSO on a city block sphere function with N = 2. The
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Fig. 1. Trajectories of the particles in one
prototypical run of PSO on the 2–D city-
block sphere problem
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Fig. 2. A run of PSOG3 on the 2–D city-
block sphere problem (same initial condi-
tions as in Fig.1)
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Fig. 3. A run of PSO on the 2–D Rastrigin
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intersection of cross hairs)
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Fig. 4. A run of PSOG3 on the 2–D Ras-
trigin function problem
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particles tend to rapidly focus towards the global optimum at the origin. Figure 2
shows the behaviour of PSOG3 in exactly the same conditions (including same
starting positions for the particles). Here the particles tend to focus less rapidly.

Figures 3 and 4 illustrate the behaviour of PSO on a Rastrigin function with
N = 2. Here the swarm controlled by PSO is quickly attracted towards a de-
ceptive local optimum, while the particles in PSOG3 perform bigger orbits and
eventually discover and start converging towards the global optimum at the origin.

5 Conclusions

GP has been able to evolve a variety of particle swarm optimisers that work
as well or considerably better than standard human-designed PSOs. Analysis of
the evolved programs has led to new insights in the design of PSOs tailored for
specific classes of landscapes.

To evolve our PSOs we have used the state of the art in GP, but we have not
proposed a great deal in terms of new GP technology. However, in the more gen-
eral context of machine intelligence, this work represents an important step within
a new research trend: using search algorithms to discover new search algorithms.
This approach has become possible thanks to the growth in computing power.
We can already foresee that the results of this may be spectacular (see, for exam-
ple, the case of Fukunaga’s award winning work on evolving human-competitive
SAT problem solvers [6]). The main contribution of this paper is to show that ge-
netic programming can evolve better than human-designed PSOs in a few hours
on a standard PC. A second contribution is to give us new ideas on what types
of particle behaviours are most appropriate for which type of landscape.

In future research we intend to apply the approach to a variety of problem
domains (including real-world problems) and to extend it by allowing GP to use
more information on the past history of the swarm to control the particles and
by allowing the evolution of coupled force-generating equations. We also intend
to explore the effects and benefits of using different performance measures for
PSO evolution.

Acknowledgments

The authors would like to thank EPSRC (grant GR/T11234/01) for financial
support.

References

1. P. J. Angeline. Using selection to improve particle swarm optimization. In IEEE
World Congress on computational intelligence, ICEC-98, pages 84–89, Anchorange,
Alaska, 1998.

2. T. M. Blackwell and P. J. Bentley. Dynamic search with charged swarms. In
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pages 19–26, New York, 9-13 July 2002. Morgan Kaufmann Publishers.



300 R. Poli, W.B. Langdon, and O. Holland

3. T. M. Blackwell and J. Branke. Multi-swarm optimization in dynamic environ-
ments. In Applications of Evolutionary Computing. Springer, 2004.

4. R. Brits, A. P. Engelbrecht, and B. Bergh. A Niching Particle Swarm Optimizer. In
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learn-
ing (SEAL’02), volume 2, pages 692–696, Orchid Country Club, Singapore, Nov.
2002. Nanyang Technical University.

5. M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(1):58–73, 2002.

6. A. S. Fukunaga. Evolving local search heuristics for SAT using genetic program-
ming. In Genetic and Evolutionary Computation – GECCO-2004, Part II, volume
3103 of Lecture Notes in Computer Science, pages 483–494, Seattle, WA, USA,
26-30 June 2004. Springer-Verlag.

7. F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated bird
flocks. In The ubiquity of Chaos. AAAS publications, Washington DC, 1990.

8. J. Kennedy. The behavior of particles. In Evolutionary Programming VII: Pro-
ceedings of the Seventh Annual Conference on evolutionary programming, pages
581–589, San Diego, CA, 1998.

9. J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann Publish-
ers, San Francisco, California, 2001.

10. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

11. T. Krink, J. S. Vesterstrøm, and R. Riget. Particle swarm optimisation with
spatial particle extension. In Proceedings of the 2002 Congress on Evolutionary
Computation CEC2002, pages 1474–1479. IEEE Press, 2002.

12. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-
Verlag, 2002.

13. M. Lovbjerg and T. Krink. Extending particle swarm opimisers with self-organized
criticality, July 11 2002.

14. E. Ozcan and C. K. Mohan. Particle swarm optimization: surfing the waves. In
Proceedings of the IEEE Congress on evolutionary computation (CEC 1999), Wash-
ington DC, 1999.

15. R. Poli and C. R. Stephens. Constrained molecular dynamics as a search and
optimization tool. In Genetic Programming 7th European Conference, EuroGP
2004, Proceedings, volume 3003 of LNCS, pages 150–161, Coimbra, Portugal, 5-7
Apr. 2004. Springer-Verlag.

16. J. Riget, J. S. Vesterstrm, and K. Krink. Division of labor in particle swarm
opimisation, July 11 2002.

17. Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC 1999), pages 69–73,
Piscataway NJ, 1999.

18. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr. 1997.



Inducing Diverse Decision Forests with
Genetic Programming
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Abstract. This paper presents an algorithm for induction of ensem-
bles of decision trees, also referred to as decision forests. In order to
achieve high expressiveness the trees induced are multivariate, with var-
ious, possibly user-defined tests in their internal nodes. Strongly typed
genetic programming is utilized to evolve structure of the tests. Special
attention is given to the problem of diversity of the forest constructed.
An approach is proposed, which explicitly encourages the induction al-
gorithm to produce a different tree each run, which represents an alter-
native description of the data. It is shown that forests constructed this
way have significantly reduced classification error even for small forest
size, compared to other ensemble methods. Classification accuracy is also
compared to other recent methods on several real-world datasets.

1 Introduction

Classification is a task in which machine learning methods are commonly used.
With knowledge of attributes (x1, x2, . . . , xn) ∈ X1 ×X2 × . . .×Xn of an object
the task is to assign a correct class k to it, which is unknown, from a set of
possible classes K. A program is sought, called classifier, that correctly describes
dependence between the class and the attributes. Decision trees [16] are a popular
paradigm for modelling such dependencies. This paper presents an algorithm for
decision tree induction from data. Emphasis is put on two important aspects of
the problem. First, highly expressive, possibly user-defined tests are allowed in
decision tree nodes. This way problem specific knowledge can be incorporated
into the algorithm. Strongly typed genetic programming is utilized in the hard
task of searching for good such tests. Similar approach has been applied in [13].
Second, the algorithm is designed to induce a whole set of diverse trees that can
be grouped together in order to improve classification accuracy. Such formation is
often called an ensemble or, in the case of trees, a forest [10]. Decision of a forest
is determined by majority vote of its individual trees. For this method to work,
it is important that the forest is diverse [12]. In other words, the individual trees
should represent alternative descriptions of the data. This is often achieved by
introducing small changes in the data that is input to the induction algorithm
[1]. In contrast the method presented in this paper explicitly encourages the
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induction algorithm to produce a different decision tree in each run from the
same, unchanged data.

2 Decision Trees

Decision trees divide the process of deciding about object’s class into a sequence
of tests. The tests are organized into a tree structure. In the tree the tests
occupy the internal nodes, the edges determine order in which the tests are
applied and the leaves represent final decisions: class labels. Classification of an
unknown object starts with test in the root node. The edge that corresponds to
the outcome of the test determines which test is applied next. This way the object
“falls through” the tree down to a leaf which finally assigns a class label to it.

(a) axis-parralel (b) multivariate

Fig. 1. An example of splitting attribute space with decision trees

Commonly used tests are in the form of conditions xi ≤ c for continuous
attributes and xi = k for discrete attributes. Here c and k are some constants
produced by the tree induction algorithm. This kind of tests partition the at-
tribute space with axis-parallel splits, as shown in figure 1(a). It is possible to
enrich expressiveness of the trees by allowing more complicated tests in the tree
nodes. An example could be x1 − sin x2 ≤ c. Trees with such tests can be more
flexible in partitioning the attribute space, as shown in figure 1(b). They are
commonly referred to as multivariate decision trees [15]. In this paper the tests
are multivariate conditions represented by a tree structure so that they can be
straightforwardly searched for with genetic programming.

3 The Tree Induction Algorithm

The algorithm follows the common top-down induction scheme, creating one
node at a time. Starting with the root node, the algorithm constructs a test
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which splits the given set of training examples into two disjoint subsets. The test
is constructed so that it maximizes a criterion of optimality, which measures the
ability of the test to discriminate examples belonging to different classes. The
same is then applied to both subsets obtained with the test. This way the original
training set is recursively partitioned until a stopping condition is met.

The individual tests are evolved with genetic programming, using terminal and
function sets as specified in section 4. The fitness function coincides with the cri-
terion of test optimality, which is based on measuring the information gain [16].
The information gain is the amount of uncertainty (entropy) eliminated by the test
from the set it splits. Let M be the training set containing n examples, and s the
number of different classes. Let ni be the number of examples belonging to class
i. Then the amount of uncertainty in the set is given by the following equation:

H(M) = −
s∑

i=1

ni log2
ni

n
. (1)

Further it is defined H(∅) = 0 and 0 log2 0 = 0. Every test t splits a set M into
MP and MN , so that M = MP ∪ MN and MP ∩ MN = ∅. The information gain
of test t is computed as:

I(t) = H(M) − H(MP ) − H(MN ) . (2)

While using I as fitness is suitable for single decision trees, it is not appropriate
when trees are sequentially induced that are to be combined into a forest. For
this scheme a modified criterion is proposed in section 5, which assures that
sequentially induced trees differ considerably from each other.

With growing depth of the tree there is an increasing risk of overfitting the
data. Therefore at each node a condition is tested which stops the induction
if either H(M)

n or the size of M drops below a threshold specified by the user.
When this condition is satisfied a leaf node is produced, which assigns to the
objects label of the class most frequent in M .

4 The Tests

Higher expressiveness of the trees implies more complex structure of the tests.
The tests are expressions in general, which in turn can be easily represented
by trees in genetic programming. In this representation the terminal set T con-
sists of attributes and perhaps other entities important for the classification,
e.g. random constants. The function set F contains operators, functions and
predicates, that express possibly meaningful properties and relations of the at-
tributes. For an expression to be a properly formed test it must evaluate to
either true or false. That is, the function in the root node of the expression
must return a boolean value. Now it comes to the serious limitation of standard
genetic programming that requires both function and terminal sets to have the
closure property. Clearly, one would expect functions that (for example) add or
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Table 1. Predefined terminals and functions

Type Terminals Functions
Nominal attributes x, R =
Ordered attributes x, R =, >

Numeric attributes x, R =, >, +, −, ∗, sin, (> 0)
Logical values ∧, ∨, ¬

multiply the attributes in the tests, but this is not possible due to the neces-
sary closure property. In addition one has to often deal with both numeric and
nominal attributes in a single classification task, which at last leads to the same
problem. To resolve this problem strongly typed genetic programming [14] was
used. It introduces types of functions and terminals similar to those found in
higher programming languages. It also adds a type checking mechanism to the
recombination operators so that only valid trees are constructed.

As said above, the function and terminal sets form a sort of language that is
used to describe the data. Ideally the user of the algorithm supplies definitions
of needed functions and terminals using his or her knowledge of the problem
at hand. As this is not always possible a basic set of functions and terminals
is predefined within the system. These allow the algorithm to handle nominal
attributes, attributes whose domain is an ordered set, and numerical attributes.
Table 1 shows a summary of the predefined functions and terminals. For each
attribute type (nominal, ordered and numeric) there is a terminal called x in the
table, which represents the value of the attribute, and a terminal called R, which
represents an ephemeral random constant [11] from the attribute’s domain. For
each type there is the function =, i.e. comparison of values of that type, which
evaluates to a logical value true or false. For ordered and numeric attributes
there is also the relational operator >. Only for numeric attributes there are
also arithmetic operators +,−,∗ and the sine function sin. For logical (boolean)
values there are functions ∧, ∨ and ¬ (conjunction, disjunction and negation,
respectively). With these functions it is possible to form tests that combine
attributes of different types, as shown in an example in figure 2.

1

3

nominal
numeric
ordered3

2

1

Attributes:

2

x

x

x
x

x

x

= OR

> >

+ 1

0,5

low

AND

green

Fig. 2. Example of a test
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5 The Forests

Classification accuracy can be often improved by the use of ensemble classifiers.
The decision of an ensemble is determined by (weighted) majority vote of the
individual classifiers. The underlying concept is that the accuracy of a diverse
ensemble of classifiers whose accuracy is at least a little better than random
guessing is generally better than accuracy of the individual classifiers. The re-
quirement of diversity is important, although precise meaning of the term has
not been given clearly yet [12]. A common way to construct different classifiers
with an algorithm that outputs a single classifier is to choose different training
data for each run of the algorithm. The widely known ensemble methods bag-
ging [5] and AdaBoost [9] follow this scheme. The algorithm presented here is
not deterministic, therefore it produces a different classifier each run even with
the same training data. To further improve the resulting ensemble diversity the
following approach is proposed.

In the top-down decision tree induction as described in section 3 the root test
heavily influences how the other, lower layer tests are formed. Thus by changing
the root node test one can substantially alter the whole tree being induced. This
is achieved by using a fitness function that causes genetic programming to search
for root tests that eliminate uncertainty other than that removed by root tests
of previously evolved trees. Tests other than root are evolved with the standard
information gain fitness given by equation 2.

It is done in the following way: The root node of the first tree in the forest
is evolved with fitness given by equation 2. It should maximize information
gain on the training set. The root node of the second tree is evolved with a
modified fitness, which favors tests, which eliminate uncertainty not eliminated
by the root node of the first tree. Suppose that the first root node test splits
the training set M into MP and MN , then the fitness used in evolution of the
second test is I(MP ) + I(MN ). The root node test of the third tree is evolved
so that it eliminates uncertainty not eliminated by either of the root tests of the
previously evolved trees. The general formula for fitness of i-th root node test
ti is:

J(ti) = min
j≤i−1

{I(MP j) + I(MNj)} , i = 2, . . . , R , (3)

where MP j , MNj are sets, in which the root node test of j-th tree splits the
original training set. Index j runs over all tests evolved before ti.

6 Experiments

In all experiments in the following subsections, the algorithm was run in the
following setup: Only predefined functions and terminals were used, as speci-
fied in section 4. For each rule genetic programming was allowed to run for 100
generations with population of 500 individuals. Maximal number of function
and terminal symbols together was limited to 12 in all tests. The induction was
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Fig. 3. Synthetic data used for experi-
ment in section 6.1
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Fig. 4. Classification accuracy of the com-
pared methods

stopped whenever H(M)
n dropped below 0, 65 bits per example or when the size

of M dropped below 5% of its original size.

6.1 Comparison to Other Ensemble Methods

In this section the proposed algorithm is compared to two popular ensemble
construction methods bagging and AdaBoost. The comparison was carried out on
synthetic data, which allowed to illustrate behavior of the proposed method. At
the same time the dataset was meant to emulate an easy but typical classification
task with two numerical attributes x, y and three classes c1, c2, c3, sampled from
a mixture of Gaussian distributions:

p(x, y|ci) =
∑

j

kijN(μij ,Σij) .

The dataset is displayed in figure 3. It is clearly visible that the classes are not
perfectly separable. One can achieve classification accuracy approx. 95%.

In the experiment four different methods were used to construct forests of
different sizes. For each method and each forest size data consisting of 1000 exam-
ples were used for training and testing in 5-fold cross-validation. This procedure
was repeated 10 times. All 50 results were then averaged.

First the forests were constructed with pure information gain as fitness, with
no changes made in the training data for different trees. This serves as a reference
to the other methods. Second, bagging was used as described in [5]. Third, the
forests were constructed with AdaBoost.M1 setup exactly as described in [9],
section 3. At last, the proposed method was used with fitness given by equation
3 for root node tests and pure information gain for the rest of nodes.

The results are shown in figure 4. The first observation is that when using
pure information gain, the induced trees are not as diverse as in the other cases,
which leads to lower classification accuracy when compared to the other methods.
This is illustrated in figure 5, where trees induced by the proposed method and
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(a) the proposed method (b) pure information gain as fitness

Fig. 5. An example of forests constructed by different methods
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Table 2. An overview of the datasets used in the experiment

dataset # examples # attributes # classes class distribution
Pima 768 8 2 65% / 35%
Heart 920 13 2 44% / 56%
Breast 699 10 2 65% / 35%

those induced using pure information gain can be visually compared. In the
figure the black lines represent the root node splits. Another observation is that
the proposed method works better compared to bagging when the forest size is
small. With growing size of the forest it ceases to have a major advantage.

Although AdaBoost is more sophisticated method than bagging, it suffers
from overfitting on this dataset as it tries to specialize on “hard” examples.
These, however, are but noise in this case. The effect is especially noticeable
for larger forest sizes. In contrast the proposed method searches for alternative
descriptions of all examples, which makes it more resistant to overfitting.

6.2 Experiments on Real-World Datasets

In this section the results of experiments are presented, which were carried out
on datasets from the UCI machine learning repository [3]. Here the proposed
algorithm was compared to several other recent methods known from the litera-
ture. A short overview of datasets employed in the comparison is in table 2. For
each dataset, the classification accuracy was tested in 10-fold cross-validation,
and this procedure was 6 times repeated. The 60 resulting values were then
averaged.

The results are summarized in table 3, which contains the values of classifi-
cation error achieved by each of the algorithms. The results of the algorithms
have been reported by their authors. A short description of the algorithms with
references to papers where the results have been reported follows. It has to be
noted that the actual experiment set-up differs for each algorithm and can be
looked up in the corresponding paper.

Table 3. Classification error of the compared algorithms in %

Pima Heart Breast algorithms
25,6 20,0 fuzzy decision trees
28,4 22,2 C4.5
25,7 3,3 C4.5 + Adaboost.M2
26,3 4,8 OC1
26,4 5,9 fuzzy rules
27,1 14,8 4,5 GP rules
24,4 13,8 3,3 NN
25,0 21,4 3,8 proposed algorithm – single tree
23,6 18,7 3,1 proposed algorithm – forest, 11 trees
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Fuzzy decision trees. An evolutionary method for induction of fuzzy decision
trees based on clustering [8].

C4.5. Well-known decision tree induction algorithm by J. R. Quinlan [16]. The
reported results are taken from [8].

C4.5 + Adaboost.M2. C4.5 combined with the AdaBoost for ensemble con-
struction [9].

OC1. A well-known algorithm for induction of oblique decision trees. In oblique
decision trees the tests are in the form of inequalities: a1x1 + a2x2 + ... +
anxn ≤ c. The reported results are taken from [6].

Fuzzy rules. An expert system based on fuzzy rules constructed with genetic
programming. [2].

GP rules. A rule-based system, evolves IF-THEN rules with genetic program-
ming. [7].

NN. A neural network (multi layer perceptron) learned by the back-propagation
method. [4].

The results indicate that the proposed algorithm is competitive with the other
algorithms. The error reduction achieved by the use of forests is significant even
for small sized forests when compared to ensemble sizes used in [5].

7 Conclusions and Future Work

An algorithm was introduced, that induces decision trees with possibly highly
expressive tests in their nodes. It allows the user of the algorithm to choose or
define “building blocks” of the decision tree tests, appropriate for the problem at
hand. As this feature is an advantage theoretically, its practical benefits for real-
world problems is still to be investigated in the future. Strongly typed genetic
programming is utilized for searching for the tests, which provides a straightfor-
ward way to construct tests with different, possibly complex structure.

A special fitness function is proposed, which allows the algorithm to sequen-
tially induce a diverse group of trees, which can be then used as a decision forest.
Decision forests constructed this way have considerably higher classification ac-
curacy than the individual trees even for small forest sizes, compared to the
general method Bagging. On the other hand they are not as susceptible to over-
fitting as the AdaBoost algorithm, which is also known to be able to improve
classification accuracy even for small ensemble sizes.

Similarly to many other evolutionary algorithms the proposed algorithm has
a number of variable parameters. The most important of them are the stopping
condition of the tree induction, the maximum allowed size of the evolved tests,
and the function and terminal sets used. The parameters used for the experi-
ments conducted in this paper can serve as reasonable default values. As a rule,
one should allow only simple tests to be evolved (i.e. tests consisting only of a
small number of functions and terminals), when the training sample is small.
Otherwise the algorithm is likely to overfit the data. Something similar holds for
the stopping condition of the induction algorithm: For small training samples
one should stop the induction earlier to avoid overfitting.
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The future work will be concentrated on the problem of searching for simple
descriptions of data, as they are likely to perform better than complex ones. The
authors’ observations suggest this, as well as several other studies [15].
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Abstract. A novel Grammatical Genetic Algorithm, the meta-Grammar
Genetic Algorithm (mGGA) is presented. The mGGA borrows a gram-
matical representation and the ideas of modularity and reuse from Ge-
netic Programming, and in particular an evolvable grammar representa-
tion from Grammatical Evolution by Grammatical Evolution. We demon-
strate its application to a number of benchmark problems where signifi-
cant performance gains are achieved when compared to static grammars.

1 Introduction

The objectives of this study are to investigate the adoption of principles from
Genetic Programming [1] such as modularity and reuse (see Chapter 16 in [2]) for
application to Genetic Algorithms, and to couple these to an adaptive represen-
tation that allows the type and usage of these principles to be evolved through
the use of evolvable grammars. The goal being the development of an evolution-
ary algorithm with good scaling characteristics, and an adaptable representation
that will facilitate it’s application to dynamic problem environments. To this
end a grammar-based Genetic Programming approach is adopted, in which the
grammars represent the construction of syntactically correct phenotypes of the
Evolutionary Algorithm.

The remainder of the paper is structured as follows. Section’s 2 and 3 de-
scribes the grammatical approach to Genetic Algorithms, section 4 details the
experimental approach adopted and results, and finally section 5 details conclu-
sions and future work.

2 Grammatical Evolution by Grammatical Evolution

The grammar-based Genetic Programming approach upon which this study is
based is the Grammatical Evolution by Grammatical Evolution algorithm [3],
which is in turn based on the Grammatical Evolution algorithm [4, 5, 6, 7]. This
is a meta-Grammar Evolutionary Algorithm in which the input grammar is
used to specify the construction of another syntactically correct grammar. The
generated grammar is then used in a mapping process to construct a solution.

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 311–320, 2005.
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In order to allow evolution of a grammar, Grammatical Evolution by Gram-
matical Evolution (GE)2, we must provide a grammar to specify the form a
grammar can take. This is an example of the richness of the expressiveness
of grammars that makes the GE approach so powerful. See [4, 8, 9] for further
examples of what can be represented with grammars, and [10] for an alterna-
tive approach to grammar evolution. By allowing an Evolutionary Algorithm to
adapt its representation (in this case through the evolution of the grammar) it
provides the population with a mechanism to survive in dynamic environments,
in particular, and also to automatically incorporate biases into the search pro-
cess. In this case we can allow the meta-Grammar Genetic Algorithm to evolve
biases towards different building blocks of varying sizes.

In this approach we therefore have two distinct grammars, the universal
grammar (or grammars’ grammar) and the solution grammar. The notion of
a universal grammar is adopted from linguistics and refers to a universal set of
syntactic rules that hold for spoken languages [11]. It has been proposed that
during a child’s development the universal grammar undergoes modifications
through learning that allows the development of communication in their parents
native language(s) [12].

In (GE)2, the universal grammar dictates the construction of the solution
grammar. In this study two separate, variable-length, genotypic binary chromo-
somes were used, the first chromosome to generate the solution grammar from
the universal grammar and the second chromosome the solution itself. Crossover
operates between homologous chromosomes, that is, the solution grammar chro-
mosome from the first parent recombines with the solution grammar chromosome
from the second parent, with the same occurring for the solution chromosomes.
In order for evolution to be successful it must co-evolve both the meta-Grammar
and the structure of solutions based on the evolved meta-Grammar.

3 meta-Grammars for Bitstrings

A simple grammar (referred to as GE) for a fixed-length (example contains 8
bits) binary string individual of a Genetic Algorithm is provided below. In the
generative grammar each bit position (denoted as <bit>) can become either of
the boolean values. A standard variable-length Grammatical Evolution individ-
ual can then be allowed to specify what each bit value will be by selecting the
appropriate <bit> production rule for each position in the <bitstring>.

<bitstring> ::= <bit><bit><bit><bit><bit><bit><bit><bit>

<bit> ::= 1 | 0

The above grammar can be extended to incorporate the reuse of groups of bits
(building blocks). In this example all building blocks that are mutliples of two
are provided, although it would be possible to create a grammar that adopted
more complex arrangements of building blocks. We refer to this grammar as
GE+BB.
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<bitstring> ::= <bbk4><bbk4>
| <bbk2><bbk2><bbk2><bbk2>
| <bbk1><bbk1><bbk1t><bbk1><bbk1><bbk1><bbk1><bbk1>

<bbk4> ::= <bit><bit><bit><bit>

<bbk2> ::= <bit><bit>

<bbk1> ::= <bit>

<bit> ::= 1 | 0

The above grammars are static, and as such can only allow one building block
of size four and of size two in the second example. It would be nice to allow
evolution to find a number of building blocks of any one size from which a
Grammatical Evolution individual could choose from. This would facilitate the
application of such a Grammatical GA to:

– problems with more than one building block type for each building block
size,

– to search on one building block while maintaining a reasonable temporary
building block solution,

– and to be able to switch between building blocks in the case of dynamic
environments.

All of this can be achieved through the adoption of meta-Grammars as were
adopted earlier in [3]. An example of such a grammar (referred to as GEGE+BB)
for an 8-bit individual is given below.

<g> ::=
"<bitstring> ::=" <reps>

"<bbk4> ::=" <bbk4t>
"<bbk2> ::=" <bbk2t>
"<bbk1> ::=" <bbk1t>
"<bit> ::=" <val>

<bbk4t> ::= <bit><bit><bit><bit>

<bbk2t> ::= <bit><bit>

<bbk1t> ::= <bit>

<reps> ::= <rept>
| <rept> "|" <reps>

<rept> ::= "<bbk4><bbk4>"
| "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>"
| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1 | 0

In this case the grammar specifies the construction of another generative bit-
string grammar. The subsequent bitstring grammar that can be produced from
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the above meta-grammar is restricted such that it can contain building blocks of
size 8. Some of the bits of the building blocks can be fully specified as a boolean
value or may be left as unfilled for the second step in the mapping process. An
example bitstring grammar produced from the above meta-grammar could be:

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bbk2><bbk2><bbk2><bbk2>
| 11011101
| <bbk4><bbk4>
| <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>

<bbk2> ::= 11

<bbk1> ::= 1

<bit> ::= 1 | 0 | 0 | 1

To allow the creation of multiple building blocks of different sizes the following
grammar (referred to as GEGE+KBB) could be adopted (again shown for 8-bit
strings).

<g> ::=
"<bitstring> ::=" <reps>

"<bbk4> ::=" <bbk4>
"<bbk2> ::=" <bbk2>
"<bbk1> ::=" <bbk1>
"<bit> ::=" <val>

<bbk4> ::= <bbk4t>
| <bbk4t> "|" <bbk4>

<bbk2> ::= <bbk2t>
| <bbk2t> "|" <bbk2>

<bbk1> ::= <bbk1t>
| <bbk1t> "|" <bbk1>

<bbk4t> ::= <bit><bit><bit><bit>
<bbk2t> ::= <bit><bit>
<bbk1t> ::= <bit>
<reps> ::= <rept>

| <rept> "|" <reps>
<rept> ::= "<bbk4><bbk4>"

| "<bbk2><bbk2><bbk2><bbk2>"
| "<bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1><bbk1>"

<bit> ::= "<bit>"
| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1
| 0

An example bitstring grammar produced by the above meta-grammar is provided
below.

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bbk2><bbk2><bbk2><bbk2>
| 11011101
| <bbk4><bbk4>
| <bbk4><bbk4>

<bbk4> ::= <bit>11<bit>

| 000<bit>
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<bbk2> ::= 11
| 00
| <bit>1

<bbk1> ::= 0
| 0

<bit> ::= 1 | 0 | 0 | 1

Modularity exists above in the ability to specify the size and content (or partial
content) of a buiding block through it’s incorporation into the solution grammar.
This building block can then be repeatedly reused in the generation of the phe-
notype. An additional mechanism for reuse is through the Wrapping operator
of Grammatical Evolution. During the mapping process if we reach the end of
the genotype and still have outstanding decisions to make on the construction of
our phenotype we can invoke the wrapping operator to move our reading head
back to the first codon in the genome. This allows the reuse of rule choices if the
codons are used in the same context.

Given that the lengths of binary strings which may need to be represented
can grow quite large it is possible to automate the creation of meta-grammars
by simply providing the length of the target solution and creating all possible
building block structures that can be used to create a bitstring of the target
length. In this study the target binary strings are of lengths 60, 90, 120, 180,
and 210. The building block sizes incorporated in their corresponding grammars
are therefore all integers that divide into the target string lengths (i.e., for a
target string of length 60 the building blocks are of sizes 30, 20, 15, 12, 10, 6, 5,
4, 3, 2 and 1).

Meta-grammars are of course not limited to the specification of grammars
for binary strings and can be easily extended to the representation of real and
integer strings as well as programs, or any structure for which it is possible to
represent in a grammatical form.

4 Experimental Setup and Results

The mGGA was applied to three problem types, namely, instances of onemax,
instances of a deceptive trap problem, and a dynamic problem instance. Two
onemax instances were adopted with target string lengths of 180 and 210.

Similarly, two instances of a Trap5 problem were used having target string
lengths of 60 and 90, with these having 12 and 18 subfunctions respectively.
The dynamic problem instance has an alternating target every 20 generations
between a onemax and zeromax problem with a target string length of 120
bits investigated. In each case the same parameter settings were adopted. These
were, a population size of 100, tournament selection, generational replacement, a
crossover probability of 0.3 between homologous chromosomes, and a mutation
probability of 0.01. Initialisation of the population was performed randomly with
individuals having in the range of 1 to 20 codons.
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Fig. 1. Plot of the cumulative frequency of success for the OneMax 180 bit problem
(left) and the OneMax 210 bit problem (right)

The results for the onemax instances are presented in Fig. 1. It is clear on both
instances that the evolvable meta-Grammar’s (GEGE+BB and GEGE+KBB)
outperform the static grammars (GE and GE+BB) in terms of the speed at
which the target solution is reached, although all grammars are capable of finding
the perfect solution in every run beyond 50 generations. We would expect, and
it is observed, that the performance of the static grammars are close due to their
similarity.

Results for the Trap5 instances are presented in Fig. 2. In this case the
evolvable meta-Grammar’s outperform the static grammars both in terms of
their speed at obtaining perfect solutions and in terms of the number of successful
runs at the end of 100 generations. The static grammar runs having less than 50%
success rate on the 60 bit instance, and less than 33% on the 90 bit instance. This
is compared to a 100% success rate for both the GEGE+BB and GEGE+KBB
grammars.

The immeadiate success of the GEGE+BB and GEGE+KBB grammars on
these static problems can be attributed, in part at least, to the relatively small
number of choices that need to be made to generate a perfect solution when
compared to making a decision on all 60, 90, 180 or 210 bits individually. In effect
if the solution grammar is generated to specify that a solution is comprised of a
building block of size 1 bits, and that the building block takes on the value 0, only
two codons are required to fully specify a correct solution to the Trap5 problem
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Fig. 2. Plot of the cumulative frequency of success for the 5Trap 60 bit problem (left)
and 5Trap 90 bit problem (right)

instances. The evolvable representation adopted contains more redundancy of a
form that provides an increased number of avenues by which a perfect solution
can be reached relatively quickly within the initial generations, which goes some
way to explain the superior performance of the GEGE grammars [13].

Results for the dynamic instance are provided in Fig.’s 3 and 4. We can see
that the two static grammars (GE and GE+BB) and the GEGE+BB gram-
mar perform well during the first twenty generations with the majority of runs
finding a perfect solution during this time. However, from the first change in
target at generation 21 up until generation 40 the performance of the GE and
GE+BB grammars degrade significantly in contrast to the two evolvable gram-
mars (GEGE+BB and GEGE+KBB), which have success rates over 50% com-
pared to 0% for their static counterparts. On return to the original target be-
tween generations 41 to 60 the static grammars peak at generation 60 with just
over a 50% success rate. During this same period the GEGE+KBB grammars
success rate is improving steadily towards 66%, while the GEGE+BB grammars
performance remains constant just short of a 100% success rate. With the next
change in target at generation 61 performance of the static grammars falls off
towards a 0% success rate while both the GEGE+BB and GEGE+KBB per-
formance improves. The mean best fitness plot (Fig. 4) supports the trends we
observe in the success rate plots. Over the course of the run we see a steady
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Fig. 3. Plot of the cumulative frequency of success for the Dynamic 120 bit problem

improvement in the mean best fitness for the GEGE+BB and GEGE+KBB
grammars, with the performance of the GE and GE+BB grammars fluctuating
more distinctly with each change in target solution. Performance for the GE
and GE+BB grammars always being better upon return to the original target
presented in the first twenty generations.

Two successful, abbreviated, sample solution grammars for the Dynamic 120
problem instance are given below for both of the GEGE+BB and GEGE+KBB
meta-grammars. In each solution the same grammar represents the two target
solutions that are required and can allow a switch between solutions by changing
a single choice made when mapping <bitstring>.

GEGE+KBB Abbreviated Sample Solution (Dynamic 120 Problem)
<bitstring> ::= <bbk1>..<bbk1>

| <bbk4>..<bbk4>
| <bbk1>..<bbk1>

<bbk4> ::= 00<bit><bit>
<bbk1> ::= 1
<bit> ::= 0

solution: 111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111111

GEGE+BB Abbreviated Sample Solution (Dynamic 120 Problem)
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Fig. 4. Plot of the the mean best fitness (left) and mean average fitness (right) for the
Dynamic 120 bit problem

<bitstring> ::= <bbk8>..<bbk8>
| <bbk24><bbk24><bbk24><bbk24><bbk24>
| <bbk5>..<bbk5>
| <bbk1>..<bbk1>

<bbk24> ::= <bit><bit>1110<bit>10110<bit>0010<bit>0<bit><bit>1<bit><bit>
<bbk8> ::= 0<bit>0<bit><bit>1<bit><bit>
<bbk5> ::= 0<bit>0<bit><bit>
<bbk1> ::= 1
<bit> ::= 0

solution: 000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000

5 Conclusions and Future Work

We presented the meta-Grammar Genetic Algorithm (mGGA), illustrating the
application of evolvable grammars to Genetic Algorithms. On the three prob-
lem domains examined there are clear performance advantages on both the two
static problems and the dynamic problem instance for the evolvable grammars
GEGE+BB and GEGE+KBB over their static counterparts GE and GE+BB.
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In addition to the application to more benchmark problem instances in par-
ticular to those belonging to the dynamic class, future work will investigate the
effects of the wrapping operator, alternative grammars and comparisons to other
Genetic Algorithms from the literature. It would be particularly interesting to
analyse the scalability of these algorithms compared to the competent GA’s,
given that the use of wrapping coupled with the reuse of building blocks has
the potential to shorten the genotypes necessary to represent harder problem
instances. A number of avenues to facilitate the co-evolution of the grammar
and solution such as different operator probabilities will also be investigated.
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Abstract. In this paper, we present a general-purpose, systematic algorithm, 
consisting of a genetic programming module and a k-nearest neighbor classifier, 
to automatically create multiple artificial features (i.e., features that are 
computer-crafted and may not have a known physical meaning) directly from 
EEG signals, in a process that reveals patterns predictive of epileptic seizures. 
The algorithm was evaluated in three patients, with prediction defined over a 
horizon that varies between 1 and 5 minutes before unequivocal electrographic 
onset of seizure. For one patient, a perfect classification was achieved. For the 
other two patients, high classification accuracy was reached, predicting three 
seizures out of four for one, and eleven seizures out of fifteen for the other. For 
the latter, also, only one normal (non-seizure) signal was misclassified. These 
results compare favorably with other prediction approaches for patients from the 
same population. 

1   Introduction 

Since the invention of the electroencephalograph, great progress has been made in 
studying many brain disorders. One of the most puzzling disorders is epilepsy, a 
neurological condition that makes people susceptible to brief electrical disturbance in 
the brain that produces a change in sensation, awareness, and/or behavior; epilepsy is 
characterized by recurrent seizures. It affects up to 1% of the world’s population, or 
60 million people and 25% of patients cannot be fully controlled by current medical 
or surgical treatment. 

Many approaches have been proposed to extract information from EEG signals in 
order to develop algorithms to predict or detect epileptic seizures [1], [4], [6], [9], 
[11], [15]. To extract the relevant information that can facilitate such prediction or 
detection, features are calculated using conventional techniques and methodologies 
that are time-consuming, trial-and-error processes requiring a great deal of effort from 
researchers. All of these conventional techniques rely on knowledge of a feature 
formula or algorithm that may have been obtained from intuition, tradition, the 
physics of the problem, analogies to problems in other fields, etc. There is no 
guarantee that any of these conventional features extracts maximally relevant 
information from the raw data. Nevertheless, seizure prediction studies using 
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conventional features increasingly hint at the fact that the information is there, waiting 
to be fully extracted. Litt et al., in [8], presents evidence that mesial temporal lobe 
seizures are generated in a series of events that evolve over hours, leading to the 
clinical seizure onset. This series of events can be recorded by depth intracranial 
EEG. However, this work was conducted by scoring, manually, many hours of EEGs 
and the detection was largely limited to what a basic energy feature could reveal 
about preictal changes. More recently, it has been shown that complicated feature 
calculations can be realized in miniaturized hardware using a cellular neural network 
approximation of the feature on a chip [10], [13]. Therefore, the present work seeks to 
develop an algorithm that can systematically and automatically find features or 
patterns starting from raw data—in this case, EEG signals. Additionally, this 
algorithm is intended to address the shortcomings of Genetically, Found Neurally 
Computed Artificial Features, an algorithm previously proposed in [4]. 

2   Methodology 

We attempt to capture a “pocket” of deterministic dynamics of EEG signals by means 
of delay-embedding in a stream of sliding windows. First we reconstruct the state-
space trajectory of the EEG signal using the standard delay-embedding scheme [14]. 
Later, this reconstructed trajectory is input into a genetic programming algorithm, 
which attempts to find a pattern(s) giving the best discrimination between baseline 
data (nonseizure) and preictal (pre-seizure) data, in the sense of a minimum-error-risk 
objective function. A universal classifier then performs the categorization task. Fig. 1 
is a diagram showing the components of the algorithm.  

2.1   State Reconstruction by Means of Delay Embedding 

Many authors have applied nonlinear dynamics tools to analyze EEG data. Chaos 
theory [12] states that within a system displaying apparently disordered random-like 
data, an underlying order exists. Because of this, one may conjecture that even if 
precise long-term prediction is impossible, prediction in the short term and with some 
error allowance may be possible in many systems. Such a property allows us to 
reconstruct the state-space trajectory of an attractor of the system (in this case, a 
model of the brain that generates the EEG signals).  

We can reconstruct the deterministic component of the state trajectory of the EEG 
signals by taking previous samples of the observable output and creating an artificial 
state vector with ne elements, which we denote λk (input to the program in Fig. 1), the 
embedding vector. This process creates a diffeomorphism (a smoothly distorted copy 
of the original trajectory) function that preserves dynamic and geometric qualities of 
the trajectory of the EEG system. 

Given such state-space trajectory reconstruction, our approach is to input these 
pseudo-state vectors (i.e., λk), evolving in time, to the genetic programming (GP) 
module, and by means of the algorithm, to find a transformation, usually nonlinear 
(although a linear transformation is also possible), that achieves the maximum 
separability between baseline and preictal data. In other words, the GP algorithm 
combines the inputs (states) in a (non)linear way and outputs  a function  that separates 
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Fig. 1. State-space reconstruction and the components (dashed box) of the genetic 
programming artificial features algorithm 

 
the baseline and preictal classes such that the performance of the classifier is better 
than or equivalent to categorizing the classes with no transformation or with a 
benchmark previously defined. To capture the above mathematically, let 

[ ] ( )φ=ky , (1) 

where φ is a transformation function designed by the GP algorithm, and  

( ) ( ) ( ) ( )( ){ }τττ 1 ,  ,2 ,, −−−−= ennxnxnxnx  (2) 

is the set of delayed samples (from a chaos theory perspective, there are the state 
variables that governs the dynamics of the brain) that the GP will use in any 
combination to construct the artificial features. The parameter τ is the delay, which 
will be determined using the autocorrelation function, and ne is the embedding 
dimension, i.e., the number of delays (or inputs) in the terminal set. In this work, the 
embedding dimension is arbitrarily selected to be 6.  

As with any conventional feature, such as Fourier transform coefficients, signal 
energy, etc., in the genetic programming artificial feature (GPAF) algorithm, we need 
to process the data as viewed through a sliding observation window. The observable 
window is defined by two parameters: length of the window, denoted L, and 
displacement, denoted D. The length L defines the number of points that will be 
evaluated (or analyzed) at one time. On the other hand, D is defined as the number of 
new points that will be used in the next evaluation or D = L – O, where O is the 
overlap with the previous window. To compress the data, a summation operator is 
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applied in each window position. Recalling (2) and adding to it the sliding window, 
i.e., a summation operator, the resultant equation is stated in (3). 

[ ] ( ) ( ) ( )( )( )
( )( )

( )+−

−−+=

−−−=
DDLk

DLkn
ei nnxnxnxky

11

1,...,, ττφ  (3) 

The yi[k] is the GP artificial feature of the EEG signal x(t), here called the artificial 
feature time series, the subscript i denotes the number of the feature, and k is the 
discrete time unit of such time-series. The summation operator observes all the points 
in the interval n delimited by 1 + (k-1)(L-D)  n  k(L-D)+1. 

The sliding window can be viewed as a reducer of dimensionality of data, i.e., the 
number of points that an epoch contains. That is, at each window position k, the 
number of points, L, will be reduced, by means of (3), to a single point at the output. 
Thus, if we have a signal that contains PTot points and we set displacement to D, the 
number of output points after the entire signal is processed by each GP artificial 
feature is κ = PTot/D - 1 - L/D, where the term 1 - L/D is an adjustment for the 
beginning of the signal where the window of length L is not complete and, thus, some 
points are not calculated. Thus, the discrete time index of the artificial times-series k 
goes from 0 to κ - 1 for each feature. 

2.2   Genetic Programming 

Table 1 shows the function set or building blocks used, which the GP algorithm will 
use to construct the programs (artificial features), in this work. The maximum tree 
depth was set to 15 and the population size to 500. The initial population was 
generated using the ramped half-and-half method. The GP used a crossover operator 
with a rate of 0.9, fitness proportional selection, and a breeding operator with a rate of 
0.1. For this work, the GP algorithm was extended to allow it to evaluate not just one 
tree per individual, but multiple trees per individual (i.e., a forest), allowing us to 
generate multiple features. All the trees of the individual were evaluated at the same 
time; however, there was no crossover among trees (features) of the same 
individual—crossover was done only among homologous trees.   

 
Table 1. Genetic Programming function set. The mathematical operators used by the GP to 
build the artificial features 
 

+ – ÷ × 
cos sin log2 log10 

ln  (  )2 abs 

2.3   Objective Function 

In this work, we desire that the GP algorithm create a set of artificial features that 
have the minimum possible error probability. Thus, the metric to be optimized is 
selected here to be the error risk [5], which assigns risk factors r > 0 to the errors, so 
that their relative costs can be accounted for as 
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( ) ( ) FPTFPFNTFNE rNSPPrSPPR +=  , (4) 

where PFN is the probability of false negatives (i.e., when the algorithm misses a 
seizure), PFP is the probability of false positives, and P(ST) and P(NST) are the prior 
probabilities of the respective classes (preseizure and baseline). Additionally, rFN is a 
risk (or cost) factor associated with missing preseizures, and rFP is a risk factor 
associated with declaring false positives. From experience, we selected rFN = 0.75 and 
rFP = 0.25. Thus, the resultant objective function is 

( ) ( ) FPFNE PPR 25.075.0 +=  . (5) 

2.4   Classifier 

Although any classifier may be used in the GPAF algorithm, in this work we select 
the classifier with one primary aspect in mind: applicability in a general-purpose 
algorithm that automatically creates artificial features from raw data (or conventional 
features if those are the starting-point data). Therefore, we selected the k-nearest 
neighbor classifier (k-NN) as a classifier component for the GPAF algorithm (last 
stage in Fig. 1). This classifier is nonparametric, nonlinear, and capable of producing 
multiple thresholds or complicated decision boundaries, making it suitable for n-
dimensional, multi-modal problems. In addition, the training process is relatively 
easy, simply involving giving to the classifier all of the training data. 

A split-sample method was used in the classification phase in order to train and test 
using different subsets of data. The experiments were conducted using a point basis, 
where each point in the artificial feature epochs counts as one example, i.e., each point κ 
is an example for the classifier. However, statistics reported on a point basis are 
impractical and not easy to interpret. For instance, if an implantable device (with GPAF 
features integrated) classifies each t seconds over an incoming EEG signal, the device 
cannot drug the patient based on the decision that the classifier makes each t seconds. 
The device needs a longer, fixed-length window, so that it can observe the past 
evolution of the point-basis classification during a defined period to decide whether a 
patient will suffer a seizure. Use of this fixed-length window is what we called block-
basis classification. Therefore, for experimental purposes, a whole artificial feature 
epoch on the point basis counts as one example in the block basis. In the experiments 
carried out in this work, results for testing data will be reported using the block basis. To 
transform results from the point basis to the block basis, a threshold will be set. If the 
point-basis classification result (i.e., the classification result of a testing epoch evaluated 
in the classifier) is equal to or exceeds the threshold, the epoch will be labeled preictal; 
otherwise, it will be categorized as baseline (nonseizure). In other words, if the 
threshold is a large number, we are increasing the probability of missing seizures, 
whereas if we set the threshold to be a small number, we are making the device too 
sensitive—that is, we would have many false positives. 

2.    EEG Data 

The anonymized EEG data used for these experiments were obtained from a tripartite 
database from Georgia Institute of Technology, Emory University, and the University 

5
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of Pennsylvania. The EEG data were recorded from epileptic patients undergoing a 
pre-surgical evaluation. Patients were simultaneously videotaped during their hospital 
stays, which varied in duration from 4 to 11 days. The EEG signals were recorded at 
200Hz, with 12-bit resolution. 

3   Results 

In the experiments in this section, all baseline and preictal epochs were 10 min long, 
thus containing 120,000 points each. The length of the sliding window was set to L = 
800 (4 s) and D = 400 (2 s). Therefore, the number of points κ, after an epoch is 
evaluated by an artificial feature, is 299 points per epoch. Preictal segments were 
selected by default to end 5 min before the unequivocal electrographic onset (UEO) of 
seizure occurred. As stated before, the embedding dimension was set to m = 6. 
Euclidean distance was selected as the metric and number of nearest neighbors for the 
k-NN classifier was set to k = 5, a value commonly used. The training set for each 
patient was one baseline and one preictal epoch, which were randomly selected from 
the sets of available data. 

The threshold to change from point basis to block basis was set to 65% in order to 
increase the confidence of the decision beyond the noise floor that a coin flipper at 
50% would create. Put in other words, if the point basis classification (i.e., the results 
from the classifier after evaluation) for an epoch is 65% or greater, the epoch will be 
labeled preictal. Otherwise, it will be classified baseline. We can see it in another 
way; if the point basis classification for an epoch is greater than 35%, the epoch will 
be classified as a baseline epoch. Otherwise, it will be labeled a preictal epoch. 

3.1   Patient A 

Patient A was diagnosed as having all seizures coming from the left anterior 
hippocampus. For this patient, we have 7 baseline epochs and 5 preictal epochs, of 
which one epoch of each set was used for the training stage. The preictal segments 
were taken in the 10-minute period ending 5 min before the UEO (so that a positive 
prediction might allow time for intervention). The delay was set to τ = 30 (0.15 s), 
selected from the first zero-crossing of the autocorrelation plot. Thus, the terminal set 
(the pseudo state-space vector) for this patient is: {x(n), x(n-30), x(n-60), x(n-90), x(n-
120), x(n-150)}. 

Equation (8) shows the artificial features found by the GPAF algorithm. Table 2 
shows the results obtained from the training data (because the training set was limited 
to one epoch per class, performance results could only be reported on the point basis). 

All baseline epochs were predicted correctly whereas 3 seizures out of 4 were 
predicted correctly. 

[ ] ( ) ( )( )
( )

+

−+=
−=

400400

14001

2
1 30

k

kn

nxnxky  

[ ] ( )( ) ( ) ( )( )
( )

+

−+=

−+−−=
400400

14001

2
2 15090ln

k

kn

nxnxnxky  

(8) 



 On Prediction of Epileptic Seizures by Computing Multiple Genetic Programming 327 

 

3.2   Patient B 

Seizures for this patient were found to be multifocal, coming from the left 
hippocampus and left anterior temporal neocortex. We have 16 baseline epochs and 
16 preictal epochs available for the training and validation procedure. The prediction 
horizon was set to 5 minutes before the UEO occurred. The delay time was computed 
as τ = 49 (0.245 s). The terminal set for this patient is: {x(n), x(n-49), x(n-98), x(n-
147), x(n-196), x(n-245)}. Equation (9) shows the artificial feature found by the 
GPAF algorithm for this patient. Table 2 depicts the results obtained from the training 
data. Table 3 shows the results for the validation data. When testing data were 
evaluated, 14 baseline epochs out of 15 were classified correctly and 11 seizures out 
of 15 were predicted (i.e., 4 seizures missed).  
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3.3   Patient C 

Seizures of patient C were diagnosed as coming from the left anterior hippocampus 
region. The delay time obtained for this patient was τ = 32 (0.16 s). Thus, the terminal 
set was: {x(n), x(n-32), x(n-64), x(n-96), x(n-128), x(n-160)}. This patient had 4 
baseline epochs and 4 preictal epochs. The preictal segments were initially selected as 
ending 5 min before the UEO occurred; however, results obtained were not good. To 
attempt to get better performance, we moved the prediction horizon to extend until 1 
minute before UEO. After this was done, a successful set of features was obtained. 
Equation (10) displays the three artificial features found by the GPAF algorithm. 
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Table 2 shows the results obtained from the training data. Table 3 depicts the 
results for the validation data. It can be noted that the features provide a 
transformation such that the classifier achieves a perfect classification (recalling that 
the threshold to convert from the point- to block-basis was set to 65%). 
 



328 H. Firpi , E. Goodman, and J. Echauz 

 

Table 2. Performance over the training set for each patient. Performance results for training 
data are presented on the point basis  
 

Patient A B C 
Baseline 88.59 85.23 87.87 
Preictal 96.98 94.3 67.1 
Average 92.79 89.77 77.44 

 

Table 3. Performance over the validation set for each patient. Performance results for 
validation data are presented on the block basis, with the threshold is set to 65% 
 

Patient Baseline Preictal FPH1 
A 100.0 75.0 0.0 
B 93.33 73.33 0.4 
C 100.0 100.0 0.0 

Average 97.78 82.78 0.133 

4   Discussion 

An average of 82.78% seizure prediction was achieved. Overall, 17 of 22 seizures 
were predicted.  On the other hand, 97.78%, or 23 baseline segments out of 24, were 
correctly classified as baseline (non-seizure) epochs.  The overall average rate of false 
positives obtained was 0.133 per hour. Although we do not present in full a 
benchmark method to compare the performance obtained from GPAF algorithm,  
we recall previous work authored by D’Alessandro et al. [3]. In this work, the  authors  

Table 4. Results for the proposed systems. This table shows the validation results for the 
different systems proposed 
 

System 
Number 
Patients 

Baseline 
Tested 

Preictal 
Tested 

%BC %PSzC FPH 

D’Alessandro 4 276 46 90.47 62.50 0.278 
GPAF 3 24 22 97.98 82.72 0.133 

used a genetic algorithm to find the “best” set of features for each patient. The set of 
features was composed by handcrafted features as energy of the signal, nonlinear 
energy, curvelength, spectral entropy, and energy of wavelet packets. Another set of 
more elemental features was also used. The GA selected a combination of features such 
that when EEG data were processed by those features, the classifier, a probabilistic 
neural network, could discriminate correctly between baseline and preictal epochs. For 

                                                           
1 FPH = False positives per hour is the number of false alarms per hour, i.e., when the 

algorithm warns an attack will occur but it does not. 
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that work, the authors used the same EEG database that we did. Table 4 shows details 
and results of D’Alessandro’s work and the results of this work for comparative 
purposes. The table contains number of patients, number of baseline tested epochs (10 
min duration epochs), number of preictal tested epochs, rate of baseline epochs 
classified correctly (%BC), rate of preictal epochs classified correctly (%PSzC), and 
average of false positive per hour. Even though is not a comparison on completely 
identical data, because training and validation sets are not the same, it gives us an idea 
how we are doing with the current methods. It does not demonstrate that our algorithm 
is outperforming D’Alessandro’s approach, but simply indicates that the GPAF 
algorithm produced promising results that are worthy of further research. 

5   Conclusion 

It is clear that the artificial feature formulas for each patient are relatively simple, but 
are far from trivial and are not likely to come from intuition or knowledge of the 
physics of the problem. The artificial features designed by the GPAF algorithm are 
“optimized” for each particular patient based only on their available raw EEG 
recordings. By construction, these features match or exceed the performance of 
traditional conventional features and are thus a viable subject for further improvement 
and research. For example, in future work, we intend to perform leave-one-out 
training and validation, which is expected to improve significantly on the 
performance obtained. 

This work also presents evidence that a unique prediction horizon for all patients 
may not be practical to determine.  Good artificial features seem to vary from patient 
to patient, as do also the prediction horizons. EEG signals in some patients present 
more obvious abnormalities before the seizure than those in other patients. 
Additionally, we need to consider that the feature search was limited by the number of 
generations, in this case between 100 and 150, because of the time/computational 
expense required to execute the algorithm. 
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Abstract. The commonly adopted fitness which evaluates the perfor-
mance of individuals in co-evolutionary systems is the relative fitness.
The relative fitness measure is a dynamic assessment subject to co-
evolving population(s). Researchers apparently pay little attention to the
use of absolute fitness functions in studying co-evolutionary algorithms.
The first aim of this work is to define both the relative fitness and the ab-
solute fitness for co-evolving systems. Another aim is to demonstrate the
usage of the absolute and relative fitness through two case studies. One is
for the Iterated Prisoners’ Dilemma. Another case is for solving the Basic
Alternating-Offers Bargaining Problem, for which a co-evolutionary sys-
tem has been developed by means of Genetic Programming. Experiments
using the relative fitness function have discovered co-adapted strategies
that converge to nearly game-theoretic solutions. This finding suggests
that the relative fitness essentially drives co-evolution to perfect equi-
librium. On the other hand, the absolute fitness measuring co-evolving
populations monitors the development of co-adaptation. Having analyzed
the micro-behavior of the players’ strategies based on their absolute fit-
ness, we can explain how co-evolving populations stabilize at the perfect
equilibrium.

1 Introduction

The objective of this study is to analyze co-evolutionary systems through using
two types of fitness functions: a relative fitness function and the chosen absolute
fitness functions.

The original concept of co-evolution comes from nature. Biologists observe
that, in nature, one species modifies itself to adapt to the changes from its
co-existing species in their shared physical surrounding. Such modifications, in
turn cause its co-evolving species to change themselves accordingly. This sort of
reciprocal evolutionary changes in interacting species is known as co-evolution
in biology.

Computer scientists, inspired by this natural phenomenon, create
co-evolutionary algorithms that have achieved considerable success in solving
a wide range of problems. Holland [6] initiates co-evolution for artificial ecology
systems; Miller [9] uses co-evolution to study Iterated Prisoners’ Dilemma; Koza
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[7] introduces the term of relative fitness and employs co-evolution to disclose
minimax strategies for a two-player finite extensive-form game. Co-evolution is
also successful in other fields: factory organization, robotics, predator-prey sys-
tems, sorting networks and social sciences.

Most applications of evolutionary algorithms (EA) have clear objectives,
which can be mathematically expressed, without interference with other evolv-
ing objects. In contrast, to most applications of the co-evolution, such absolute
fitness functions usually are unavailable. In the case of two-player games, for
example, the performance of a player’s strategy depends on the strategy his
opponent uses. The opponents strategy set is generally huge in size. Therefore,
any strategy cannot be taken as the best response without knowing the oppo-
nent’s behavior. Because of the difficulty of discovering underlying objectives for
some problems, researchers turn to use co-evolution to solve these problems for
which reliable and precise objectives are unknown, whereas a kind of “recipro-
cal” relationship between (among) species (players in games), can be assumed.
Applications have shown that co-evolution using the relative evaluation makes
it possible to solve a class of problems.

Recent researches disclose that under certain conditions, the absolute fitness
may provide the same information as the relative fitness. de Jong and Pollack [5]
have proved that by identifying a complete evaluation set, an algorithm named
DELPHI is able to generate tests that probably have the same results as testing
against co-evolving population(s). One purpose of introducing this ideal evalu-
ation is to avoid inaccuracy in co-evolutionary algorithms. Luke and Wiegand
[8] argue the possibility of existing an objective measure that may make EA
exhibit similar dynamics and generates similar results to a single-population co-
evolution. Our work tries to analyze the absolute fitness and relative fitness,
and furthermore to understand the behaviors of co-evolving strategies and their
incremental learning.

In the following sections we first present formal definitions of the relative
fitness and the absolute fitness. Section 3, reviews literature of two studies on
Iterated Prisoner’s dilemma and compares the different results generated by
the absolute fitness and by the relative fitness. In section 4, we introduce an
Alternating-Offers Bargaining Problem, describe the design of a co-evolutionary
system for solving this bargaining problem and present experimental results
by using a relative fitness function. Section 5 summarizes observations from
experiments using two absolute fitness functions. Conclusions will be drawn in
section 6.

2 Relative and Absolute Fitness in Co-evolution

In terms of co-evolutionary algorithms, the relative fitness [7] (also called sub-
jective fitness), measures how fit co-evolving species (players in games) are to
each other, and is usually the straightforward option for applications of the
co-evolutionary algorithms. Relative evaluation functions are dynamic, updat-
ing over evolving time. In other words, individuals in different generations are
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evaluated by probably different functions. In contrast, the absolute fitness [7]
(objective fitness) evaluates the fitness upon static targets, similar to the objec-
tive fitness in evolutionary algorithms. Using the absolute fitness is implicit in
applications of conventional evolutionary algorithms where the objective func-
tion is assumed to be identical over all generations. In co-evolution, the absolute
fitness can behave as a monitor rather than a part of co-evolving process. It
provides information concerning the co-adaptive process.

To these two concepts, “the classic analogy is the co-evolutionary arms race
(in nature): a plant has chemical defenses and an insect evolves the biochemistry
to detoxify these compounds. The plant in turn evolves new defenses that the
insect in turn ‘needs to further detoxify” [12]. The (relative) fitness of the insect
depends on the evolutionary state of the plant, so the relative fitness directs the
insect to adjust its behaviors to detoxify the plant’s current chemical defenses.
From the insect’s relative fitness, we know the situation of co-adaptation of
these two species at certain time, in other words, how fit the plant to the insect.
To discover how the insect adapts to the plant progressively, it is necessary to
investigate the insect’ biochemistry (the insect’s absolute fitness) at every stages
of the co-evolution.

We formalize the above two concepts. Suppose in a simple co-evolving system,
two species exist in a stable physical environment. The two populations (P , P ′)
are the sets of individuals of these two species which are simultaneously co-
evolving over time in terms of the generation g, a positive integer. Assume these
two species start evolving at the same time and spend exactly same amount of
time per generation. The pair of populations at the generation g is (P (g), P ′(g))
which means co-evolving populations are functions of the generation.

In this co-evolutionary system the Relative Fitness Function r of an individual
x ∈ P is a function of x and of the state of the other population P ′: r(x, P ′). If
the generation is specified, we get: r(x, P ′(g)). It simply tells that the individual
x, has a relative fitness implicitly depending on the evolving time g because r is a
function of P ′ that is changing over time. Unlike the relative fitness function r, the
absolute fitness function f evaluates an individual x in P not in connection with
the co-evolving P ′ but upon a static objective f(x) independent of the time g.

Note that in general it is relative fitness that motivates the co-evolutionary
improvement, (to detoxify the plant’s present chemical defenses is what the insect
tries to do now), but the relative one records the co-evolving history (at different
evolving times, the insect has different biochemistry materials). It is impossible
to transform a relative fitness into an absolute one or vice versa, because the
relative fitness is always a function of time and generation-dependent, but the
absolute fitness is not. Only if the time is frozen at a certain moment g, can the
relative fitness at that time g be also interpreted the absolute fitness at g.

3 Studies of Iterated Prisoners’ Dilemma

Two studies on a well-known controversy of the Iterated Prisoners’ Dilemma
(IPD) are good expositions of how an absolute fitness function and a relative
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fitness function can generate different results to the same problem. Axelrod’s
GA experiments [1] evolves player’s strategies against a fix environment, “eight
representatives”. The set of these eight chosen representatives is an absolute
fitness evaluator that is independent of the evolving time. His GA experimental
results support the claim that TIT FOR TAT and its variants are the best
responses to IPD problem.

However, this claim is questioned by the results from co-evolutionary exper-
iments where a relative fitness function is in use. Darwen and Yao [3] follow
the strategy representation by Axelrod’s [1] , but a strategy fitness is the scores
it achieves from playing against all the other strategies in its population. This
setting is a typical one-population co-evolution with the use of a relative fitness
measure. In the end of their experiments [3], “only cooperative strategies sur-
vive”, however some behavioral patterns claimed to be parts of TIT FOR TAT
and its variants in [1] have not been reported: “Be provocable” and “accept a
rut” which play defections.

4 A Co-evolutionary System for the Bargaining Problem

We thereafter exemplify the uses of the absolute fitness and relative fitness in
another case study on a bargaining problem.

4.1 Alternating-Offers Bargaining Problem

A classic bargaining problem modeled and solved by Rubinstein [13] is named
as the Basic Alternating-Offers Bargaining Problem. Its bargaining scenario de-
scribes as two players making proposals on dividing a cake in an alternating
manner. At any given time when one makes an offer, the other one can either
accept thus the game ends with agreement, or reject then the game continues
and the player who rejected the previous offer makes a new proposal. The player
i’s bargaining cost is expressed by a discount factor δi, which means his partition
from a cake with the size of π = 1, shrinking to δt

i at the time t, a non-negative
integer.

In terms of game theory, this bargaining problem is an infinite extensive-
form game with complete and perfect information. All combinations of players’
behaviors are infinite. Game theorists intelligently reduce the solution space by
imposing strict assumptions on players’ rationality, which players have all rele-
vant knowledge, well-defined and stable utility functions and full computational
capacity [11]. Technical treatments and proofs are available in [13], and [2]. The
unique Equilibrium taken as the formula solution of this game is Perfect Equi-
librium Partition (P.E.P) in which the first player obtains:

π∗
1 =

1 − δ2

1 − δ1δ2
(1)
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4.2 A Co-evolutionary System and Experimental Outcomes

We have applied co-evolution to solving this bargaining problem, which has been
described by [4] in great detail 1.

We hypothesize there are reciprocal interactions between players’ behav-
iors, and players learn through trial-and-error experiences. We implement a co-
evolution system for this problem by Genetic Programming (GP). There are two
populations, one for the player A and another for the player B. Each population
consists of 100 candidate solutions: strategies. A strategy decides its player’s
behaviors on all possible contingencies. The function-oriented representation of
a time-dependent strategy of the player i is si = gi × (1 − ri)t where t is the
bargaining time and ri is the i’s discount rate, δi ≡ e−ri . A genetic program, a
function gi is the part of a strategy to be co-evolving, consisting of all or some
elements in the primitive set of {1, -1, δi, δj , +, - , × and ÷ (protected) }.

The set (population) Sx have m candidate strategies, of the player x. The
payoff of i (i ∈ Sx) from an agreement with j ∈ Sy is denoted as pi→j . Sy has n
strategies. In this case, n = m. The fitness function of i is:

fi =

∑
j∈Sy

pi→j

n
(2)

fi returns the average payoff a strategy received from agreements with either the
co-evolving opponent or the monitor. When Sy is a co-evolving set, fi calculates
the relative fitness of i at the co-evolving time when Sy emerges. If Sy is static,
fi returns i’s absolute fitness.

This system performs relatively stable while the crossover rate is within 0
to 0.1 and the mutation rate ranges from 0.01 to 0.5. In a typical run shown
in Fig. 1, the behaviors of two players tend stable before the 200th generation.
Fig. 1 illustrates the GP programs’ values, shares πA from the agreements and
payoffs of the best-of-generation strategies of the first player A. To terminate
runs at the time of the 300th generation is practically efficient to stabilize
fitness.

The table 1 displays the experimental outcomes from using the relative fit-
ness function. A strategy’s fitness at the generation g is determined by its actual
payoff from bargaining against his opponent’s strategies at the corresponding
time. In the Table 1, the average shares of πAs from agreements are shown, as
the πBs are that of complement. The πAs in final agreements converge to the
neighborhood of the theoretical prediction P.E.P. From a regression analysis on
the results in table 1, the R-square value is 0.9928, which is very close to 1.
Its coefficient variable is 0.9588 and coefficient intercept is 0.0257. These tell
how much of P.E.P is approximated by experimental results. In our case, the

1 [4] includes the motivations, alternative assumptions of the EA method to the game-
theoretic assumptions, together with the experimental setting-up, outcomes and con-
clusions. To make this paper self-contained, we outline critical information to permit
replication and present major results.
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Fig. 1. A typical run: best-of-generation strategies for the first player A. The pair of
discount factors is (0.9, 0.4). The line y = 0.9375 is the P.E.P of the player A. The
overlaps of πA, pA, and gA imply that agreements are settled down at time t = 0. No
bargaining cost incurs [4]

Table 1. Shares πA obtained by the best-of-generation individual in the player A’s
population at the 300th generation. The mean of 100 runs for each game setting

Discount P.E.P Experimental πA’s
Factors π∗

A Mean πA Deviation

( 0.1 , 0.1 ) 0.9091 0.9226 0.0308
( 0.4 , 0.1 ) 0.9375 0.9987 0.0064
( 0.4 , 0.6 ) 0.5263 0.5092 0.0102
( 0.4 , 0.9 ) 0.1563 0.1444 0.1155
( 0.5 , 0.5 ) 0.6667 0.6754 0.0271
( 0.9 , 0.1 ) 0.9890 0.9989 0.0030
( 0.9 , 0.4 ) 0.9375 0.9104 0.0091
( 0.6 , 0.9 ) 0.2174 0.1551 0.0458
( 0.9 , 0.9 ) 0.5263 0.5141 0.1194
( 0.9 , 0.99 ) 0.0917 0.1167 0.0585

regression result is π∗A = 0.9588×πA +0.0257, so P.E.P is nicely approximated
by the experimental results. This demonstrates that the co-evolution experiment
is a convincing approximator of the game-theoretic method. These experimental
results indicate that the relative fitness is a satisfied assessment that success-
ful guides the co-evolving players to perform approximate Perfect Equilibrium
strategies.
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5 Absolute Fitness Evaluation

In the aforementioned experiments, the members of the populations at the end
of co-evolving time are co-adapted strategies for a particular bargaining setting.
These outcomes are inadequate to answer relevant questions that are important
in observing the co-adapting process and evaluating the co-adaptive strategies’
performance. How a co-evolving population develops in order to find the best
responses to the opponent’s population? Can co-adapted strategies out-perform
the theoretical solution? Another question is during the evolving time, whether
co-evolutionary learning helps players to adapt to more diverse environments, or
only perform well to its co-adapted population Sy in (2), a dynamic but known
environment.

5.1 Experimental Design

Taking into account the property of the absolute fitness, and the knowledge of
game theoretic solutions, we design two external indicators to continually assess
the co-adapting individuals, without replacing the relative fitness measure for
the co-evolving. At every generation, each co-evolving population is evaluated
against the set of P.E.P strategies and against another static set of randomly
generated strategies.

First player A’s co-evolving population AC starts from a randomly generated
initial population AR. AP is his P.E.P strategy. Similarly, player B’ BC , BR, and
BP refer to B’s co-evolving population, random population and P.E.P strategy,
respectively. All random strategies make proposals uniformly distributed in the
range of [0, 1]. The following sets of experiments are to be executed, in which
the symbol “◦” means “to bargain against”: (i) AC ◦ BR and AR ◦ BC : random
strategies against co-evolving strategies; (ii) AR ◦ BP and AP ◦ BR: random
strategies against P.E.P strategies. AR and AR could utilize the initial popula-
tions which are also generated randomly; (iii) AC ◦ BP and AP ◦ BC : co-evolving
strategies against P.E.P strategies.

5.2 Experimental Results

We choose an absolute fitness function that Sy in (2) is the A’s P.E.P, to study
the co-evolving population B. In a typical run shown in Fig. 2, it is observed that
in a very short period of time immediately after the beginning, the highest AC

performs better than AP because that P.E.P is unable to exploit some inexpe-
rienced strategies of BC who propose or accept a partition of cake less than the
P.E.P. But some strategies in the randomly generated AC can take advantages
of these weakly performed strategies in BC by asking lager shares than P.E.P.

In the following of evolving time, the average absolute fitness of AP declines
after first twenty of generations and stabilizes after around 150th generation.
This suggests that his opponent BC is learning to gain payoff more than he did
at the beginning when he had no experience. But BC ’ improvement does not
reflect on his relative fitness against his co-evolving opponent AC . ACs relative
fitness remains rather stable after the 20th generations. Therefore, it is the ab-
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fitness of co-evolving AC , against co-evolving BC

solute fitness from the fix opponent population (AP ) that provides information
concerning a co-evolving population’s (BC ’s) adaptation and improvement.

Another absolute fitness function for studying co-evolving population BC is
using a fix randomly generated population AR. In Fig. 3, the highest absolute
fitness of AR almost overlaps the highest relative fitness of AC . Both values
quickly decline from 3.5 to 3.23. This implies that BC quickly discovers the
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approximation to his P.E.P and also improves its competitive strength against
both its co-evolving population AC and the random AR. Due to the diversity
property of the random population AR, the absolute fitness of AR does not show
as strong indication of BC ’s adaptation as the above example.

6 Conclusions

This work formalizes two important concepts about the fitness evaluations in
artificial co-evolution: the absolute and relative fitness. These two fitness evalu-
ations have resulted in inconsistent outcomes to the IPD problem, reported in
literature. Taking an application of the co-evolutionary algorithms for solving the
bargaining problem as another example, we analyze the co-adapting process of
two distinct populations of a co-evolutionary system through observing develop-
ment of individuals’ relative and absolute fitness. We gain insights into not only
the empirical justification to the game-theoretic P.E.P, but also the importance
of the adoption of absolute evaluations to co-evolutionary adaptive systems. On
the ground of experimental observations, the relative fitness continues pushing
individuals to co-adapt. The absolute evaluation, on the other hand, provides
information on the co-evolving process, by measuring against fixed objectives.
We have noticed that the absolute fitness functions chosen in this example, limit
on overspecialization and problem-specific knowledge. Future studies on the ab-
solute evaluations for more general applications will be examined.
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Abstract. Genetic Programming (GP) has been shown to be a good method of
predicting functions that solve inverse problems. In this context, a solution given
by GP generally consists of a sole predictor. In contrast, Stack-based GP systems
manipulate structures containing several predictors, which can be considered as
teams of predictors. Work in Machine Learning reports that combining predictors
gives good results in terms of both quality and robustness. In this paper, we use
Stack-based GP to study different cooperations between predictors. First, prelim-
inary tests and parameter tuning are performed on two GP benchmarks. Then,
the system is applied to a real-world inverse problem. A comparative study with
standard methods has shown limits and advantages of teams prediction, leading
to encourage the use of combinations taking into account the response quality of
each team member.

1 Introduction

A direct problem describes a Cause-Effect relationship, while an inverse problem consists
in trying to recover the causes from a measure of effects. Inverse problems are often far
more difficult to solve than direct problems. Indeed, the amount and the quality of the
measurements are generally insufficient to describe all the effects and so to retrieve the
causes. Moreover, since different causes may produce the same effects, the solution of
the problem may be not unique. In many scientific domains, solving an inverse problem
is a major issue and a wide range of methods, either analytic or stochastic, are used.
In particular, recent work [6][4] has demonstrated that Genetic Programming (GP) is a
good candidate.

GP applies the Darwinian principle of survival of the fittest to the automatic discov-
ery of programs. With few hypothesis on the instructions set used to build programs,
GP is an universal approximator [16] that can learn an arbitrary function given a set of
training examples. For GP, as for Evolutionary Computation in general, the way indi-
viduals are represented is crucial. The representation induces choices about operators
and may strongly influence the performance of the algorithm. The emergence of GP in
the scientific community arose with the use, inter alia, of a tree-based representation,
in particular with the use of the Lisp language in the work of Koza [8]. However, there
are GP systems manipulating linear structures, which have shown experimental perfor-
mances equivalent to Tree GP (TGP) [1]. In contrast to TGP, Linear GP (LGP) programs
are sequences of instructions of an imperative language (C, machine code, . . . ). The
evaluation of a program can not be performed in a recursive way and so needs to use
extra memory mechanisms to store partial computations. There are at least two kind of
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LGP implementation. In the first one [1], a finite number of registers are used to store
the partial computations and a particular register is chosen to store the final result. In
the other one, the stack-based implementation [12],[15] and [3], the intermediate com-
putations are pushed into an operand stack and the top of stack gives the final result.
It is important to note that in TGP, an individual corresponds to a sole program and its
evaluation produces a unique output. In LGP, an individual may be composed of many
independent sub-programs and its evaluation may produce several outputs and some of
them may be ignored in the final result. In this paper, we propose to combine those
sub-programs into a team of predictors.

The goal of Machine Learning (ML) is to find a predictor trained on set of examples
that can approximate the function that generated the examples. Several ML methods are
known to be universal approximators, that is they can approximate a function arbitrarily
well. Nevertheless, the search of optimal predictors might be problematic due to the
choice of inadequate architecture but also to over-fitting on training cases. Over-fitting
occurs when a predictor reflects randomness in the data rather than underlying function
properties, and so it often leads to poor generalization abilities of predictors. Several
methods have been proposed to avoid over-fitting, such as model selection, to stop train-
ing or combining predictors, see [14] for a complete discussion. In this study, we mainly
focus on combining predictor methods, also called ensemble, or committee methods. In a
committee machine, a team of predictors is generated by means of a learning process and
the overall predictions of the committee machine is the combination of the predictions
of the individual team members. The idea here, is that a team may exhibit performances
unobtainable by a single individual, because the errors of the members might cancel
out when their outputs are combined. Several schemes for combining predictors exist,
such as simple averaging, weighted combination, mixtures of experts or boosting. In
practice, ANN ensembles have already been strongly investigated by several authors,
see for instance [9]. In the GP field, there has been some work on the combination of
predictors, see for examples [17][11][2].

In this paper, our goal is initially to improve the performance of stack-based GP
systems by evolving teams of predictors. The originality of this study is that teams
have a dynamic number of members that can be managed by the system. In Section 2,
we describe different ways to combine predictors and how to implement them using a
stack. In Section 3, evolutionary parameters are tuned and the performances of several
combinations are tested on two GP benchmarks and on a real-world inverse problem.
Finally, in Section 4, we investigate the relationship between uncontrolled growth of
program size in GP and dynamical size of teams.

2 Teams of Genetic Predictors

2.1 Stack-Based GP

In stack-based GP, numerical calculations are performed in Reverse Polish Notation.
According to the implementation proposed by Perkis[12], an additional type of closure
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1 ADD 5 2 SUB b) 1 1 ADD 5 2 SUB 1

2

e)
5

1 ADD 5 2 SUB 1d)
5

1 ADD 5 2 SUB 1f)
3

1 ADD 5 2 SUB a)

1 ADD 5 2 SUB c) 1

Fig. 1. Evaluation of a program in Stack-based GP

constraint is imposed on functions: they are defined to do nothing when arity is unsatisfied
by the current state of the operand stack. In Figure 1, a basic example of program
execution is presented. We can see the processing of the program “1,ADD,5,2,SUB”.
Initialization phase corresponds to step a where the stack is cleared. During steps b, d and
e, numerical constants 1, 5 and 2, respectively, are pushed onto the operand stack. During
step f, since the operand stack stores enough data (at least two), the “SUB” instruction
is computed and the result (3 = 5 − 2) is pushed onto the stack. During step c the
stack contains only one value, so computation of the “ADD” instruction is impossible:
the instruction is simply skipped with no effect on the operand stack. In most cases,
problems addressed using GP are defined with multiple fitness cases and a compilation
phase can easily removed those unexpected instructions to speed up evaluation.

Let us note that after step f, the operand stack contains the values 1 and 3. This
means that there are two independent sub-programs, “1” and “5,2,SUB”, in the se-
quence “1,ADD,5,2,SUB”. We propose to make the whole set of sub-programs involved
in the fitness evaluation. The idea is to combine the results of each sub-programs, i.e.
all the elements of the final stack, according to the nature of the problem addressed. For
example, in the case of a Symbolic Regression Problem, any linear combination of the
sub-programs outputs may be investigated. Using this kind of evaluation, the evolution-
ary process should be able to tune the effect of the genetic operators by changing the
number and the nature of sub-programs and so modifying the contribution of each of them
to the final fitness. Moreover the amount of useless code usually found in stack-based
representation programs is significantly decreased leading to improved performance.
This approach may be viewed as the evolution of teams of predictors corresponding to
the combination of sub-programs.

2.2 Different Combinations

Let us consider a program with m instructions giving a team T having k ∈ [1, m]
predictors pi. The team output O(T ) consists of a combination of the k predictors
outputs o(pi). Several combinations have been tested :
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Team combination O(T )
Sum : Sum of each predictor output

∑k

i=1 o(pi)
AMean : Arithmetic mean of predictors outputs 1

k

∑k

i=1 o(pi)
Pi : Product of each predictor output

∏k

i=1 o(pi)

GMean : Geometric mean of each predictor output k

√∏k

i=1 o(pi)

EMean : Mean of each predictor output weighted by their error 1∑k

i=1
wi

∑k

i=1 wio(pi)

WTA : Winner predictor output Takes All o(argminpi,i∈[1,k](E(pi)))
Top : Top of stack predictor output o(pk)

with E(pi) the training error of pi and with wi = e−βE(pi), β a positive scaling factor.

3 Experimental Results

3.1 Symbolic Regression

In this section, the evolutionary parameters’ tuning is extensively investigated on a Sym-
bolic Regression Problem. We choose the Poly 10 problem [13], where the target function
is the 10-variate cubic polynomial x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10. In this
study, the fitness is the classical Root Mean-Square Error. The dataset contains 50 test
points and is generated by randomly assigning values to the variables xi in the range
[−1, 1]. We perform 50 independent runs with various mutation and crossover rates.
Populations of 500 individuals are randomly created according to a maximum creation
size of 50. The instructions set contains: the four arithmetic instructions ADD, SUB,
MUL, DIV, the ten variables X1 . . . X10 and one stack-based GP specific instruction
DUP which duplicates the top of the operand stack. The evolution, with elitism, maxi-
mum program size of 500, 16-tournament selection, and steady-state replacement, takes
place over 100 generations 1. We use a statistical unpaired, two-tailed t-test with 95%
confidence to determine if results are significantly different.

In Table 1, the best performances on the Poly 10 problem with different combinations
of predictors are presented, using the best settings of evolutionary parameters found,
crossover rate varying from 0 to 1.0 and mutation rate from 0 to 2.0. Let us notice that a
mutation rate of 1.0 means that each program involved in reproduction will undergo, on
average, one insertion, one deletion and one substitution. In the first row, results obtained
using a Tree GP implementation2 are reported in order to give an absolute reference. We
see that the classical Top of stack and WTAmethods work badly, which is to be expected,
since in this case, teams’ outputs correspond to single predictor outputs. The Sum and
AMean methods report good results compared to the Tree method. In contrast, the
Pi and GMean methods are not suitable for this problem, perhaps because the Poly 10
problem is easiest to decompose as a sum. Finally, EMean undoubtedly outperforms

1 In a steady state system, the generation concept is somewhat artificial and is used only for com-
parison with generational systems. Here, a generation corresponds to a number of replacement
equal to the number of individual in the population, i.e. 500.

2 We note that an optimization of parameters has been also performed for Tree GP.
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Table 1. Best Results on Poly 10 Table 2. Results on Mackey-Glass (10−2)

Train
Team Mean Std Dev Best Worst

Tree 0.250 0.072 0.085 0.407
Top 0.353 0.105 0.172 0.520
WTA 0.443 0.048 0.347 0.541
Sum 0.173 0.031 0.120 0.258

AMean 0.165 0.034 0.109 0.251
Pi 0.361 0.063 0.220 0.456

GMean 0.222 0.027 0.151 0.301
EMean 0.066 0.017 0.029 0.141

Train Valid Test
Team Mean Std Dev Mean Std Dev Mean Std Dev

Tree 0.61 0.14 1.06 0.43 1.21 0.71
Top 1.09 0.24 0.99 0.35 0.95 0.33
WTA 1.87 1.04 1.97 1.06 1.95 0.36
Sum 0.64 0.05 0.83 0.21 1.38 0.39
AMean 0.63 0.06 0.81 0.20 0.83 0.40
Pi 0.71 0.15 0.84 0.27 1.10 0.44
GMean 0.67 0.04 0.78 0.14 0.76 0.15
EMean 0.59 0.03 0.74 0.07 0.71 0.06

other methods. We note that results presented here correspond to a scaling factor β of
10. In Figure 2, the average training error is plotted as a function of β. The training error
is clearly related to β and gives a minimum for β = 10.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

AMean 0.001 0.01 0.1 1.0 10 100 WTA

F
it
n

e
s
s

Team Combination

Fig. 2. Average train error for AMean, WTA
and EMeanwith different β on Poly 10 prob-
lem

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

AMean 0.001 0.01 0.1 1.0 10 100 WTA

F
it
n
e
s
s

Team Combination

Fig. 3. Average test error for AMean, WTA
and EMean with different β on Mackey-
Glass problem

3.2 Chaotic Time Series

In this Section, we choose the IEEE benchmark Mackey-Glass chaotic time series (see
http://neural.cs.nthu.edu.tw/jang/benchmark/, τ=17, 1201 data points, sampled ev-
ery 0.1) to examine the performances of different teams in the context of over-fitting.
This problem has already been tested in LGP, see [10] for example, and seems to have
sufficient difficulty to allow appearance of over-fitting behaviors.

We have discarded the first 900 points of the dataset to remove the initial transients
and we have decomposed the last 300 in three sets of same size, the Train, Validation
and Test sets. The goal for GP is, given 8 historical values, to predict the value at time
t + 1. Thus, each set contains 100 vectors with values at times t − 128, t − 64, t − 32,
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t − 16, t − 8, t − 4, t − 2 and t. The evolutionary parameters are identical to those used
to solve the Poly 10 problem. The instruction set is limited to handle only the 8 inputs
and an Ephemeral Random Constant (cf. [8]) in the range [-1, 1] has been added onto
the instructions set.

In Table 2, the performances on the Mackey-Glass problem with different combina-
tions of predictors are presented, using the best settings of evolutionary parameters found
on Poly 10 problem. The train errors reported here tend to confirm the previous results on
Poly 10. Indeed, the Top and WTA combinations give the worst results while, with other
combinations, we have obtained performances equivalent to Tree GP. We see important
variations between Train and Test errors, in particular for Tree and Sum combination.
However we have found only 2 or 3 programs with very bad test errors (among 50 per
each combination) that are responsible of the main part of these variations. The EMean
team has obtained the best results, for both train and test errors, and seems to over-fit less
than the others. It is important to note that the programs discovered during our different
experiments on the Mackey-Glass problem with Stack GP have approximatively the
same number of instructions than programs obtained with the Tree GP implementation.

The results of EMean combination presented here correspond to a scaling factor β
of 0.01. In Figure 3, the average test error is plotted as a function of β. The test error is
clearly related to β and gives a minimum for β=0.01.

3.3 Inverse Problem

The real-world inverse problem addressed here deals with atmospheric aerosol char-
acteristics. An accurate knowledge of these characteristics is central, for example, in
satellite remote sensing validation. A large amount of data is necessary to train inverse
models properly. The teaching phase should be performed with truthful data so that
inverse models are learned with the influence of natural variabilities and measurement
errors. However, according to the inverse problem to deal with, it may be difficult to
gather enough measurements to cover the data space with sufficient density. It is com-
mon to use simulated data for the training step and to add some geophysical noise in
the data set to account for measurement errors [7][4]. Therefore, in this paper, synthetic
data obtained with a radiative transfer model were used to perform the learning step.

We want to inverse a radiative transfer model, called Ordres Successifs Ocean At-
mosphere (OSOA) model, which is described in detail by Chami et al [5]. The direct
model solves a radiative transfer equation (RTE) by the successive orders of scattering
method for the ocean-atmosphere system. It takes into account the multiple scattering
events and the polarization state of light for both atmospheric and oceanic media. The
atmosphere is a mixture of molecules and aerosols. Aerosols are supposed to be homo-
geneous spheres. The aerosol model is defined (refractive index and size distribution)
and its optical properties (phase function, single scattering albedo) are computed using
Mie theory. The air-water interface is modeled as a planar mirror. Consequently, the
reflection by a rough surface is not taken into account in the radiative transfer code. The
OSOA outputs the angular distribution of the radiance field and its degree of polarization
at any desired level (any depth, the surface or the top of atmosphere).

In this study, the solar zenith angle is fixed to 70 degrees. Each row of the dataset
corresponds to sky radiances at 440 nm, 675 nm and 870 nm for 10 scattering angles
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Table 3. Results on Inverse Problem

Train Valid Test
Team Mean Std Dev Mean Std Dev Mean Std Dev

Tree 0.018 0.004 0.018 0.004 0.021 0.006
Top 0.035 0.006 0.032 0.006 0.035 0.006
WTA 0.040 0.013 0.037 0.012 0.041 0.014
Sum 0.019 0.004 0.018 0.004 0.020 0.005
AMean 0.021 0.004 0.019 0.004 0.022 0.005
Pi 0.022 0.004 0.021 0.004 0.023 0.005
GMean 0.017 0.002 0.019 0.006 0.022 0.009
EMean 0.013 0.002 0.012 0.001 0.014 0.003
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ranging from 3 to 150 degrees. From these 30 inputs, the inverse model has to retrieve
the aerosol optical depth τa at 675 nm. To avoid over fitting, we have decomposed the
dataset into three parts, 500 samples are devoted to the learning step, 250 to validation
and test steps. The evolutionary parameters are identical to those used to solve the Poly
10 problem. The instruction set is extended to handle the 30 inputs. Finally, a LOG
instruction (ln|x|) and an Ephemeral Random Constant (cf. [8]) in the range [-10, 10]
have been also added onto the instructions set.

In Table 3, the performances on the inverse problem with different combinations of
predictors are presented. As previously, for similar reasons, we see that the classical
Top of stack and WTA methods works badly. Contrary to results reported for Poly 10
problem, EMean is the only method that significantly outperforms Tree. We note that
results presented here correspond to a scaling factor β fixed to 0.1. Figure 4 shows
performances on test data of the best team found with EMean and β = 0.1. We see that
a good agreement is obtained between expected and predicted τa giving a nearly perfect
inversion.

In Figure 5, the average test error is plotted as a function of β. The test error is
clearly related to β and gives a minimum for β = 0.1. We have also trained two ANNs
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on this inverse problem : one ANN with feed-forward topology and no hidden layer
(to handle linear relationships only) and one ANN with feed-forward topology and one
hidden layer (optimal number of nodes found experimentally). The corresponding test
errors are also plotted in Figure 5. We see that the use of teams of predictors improves
the performances of the GP system in such a way that it outperforms a linear ANN.
Nevertheless, the accuracy of a non-linear ANN can not be obtained with the parameters
used in this study. Let us notice that they are many sophisticated techniques, such as
Automatic Define Functions, Demes, . . . , well known in the GP community, that could
significantly improve the results presented here. Our aim was not to compare ANN and
GP, but rather to quantify the benefit of optimizing the β parameter.

4 Discussion

In this paper, a team of predictors corresponds to a combination of the sub-programs of a
stack-based GP individual. Contrary to previous studies addressing teams of predictors in
GP, here, the number of members of a team is not apriori fixed but can change during the
evolutionary process. We had hoped that the dynamic of the algorithm would optimize
the number of members. Unfortunately, the team size tends to increase quickly as of
the early generations and is strongly correlated to the size of individuals. Moreover, it
is well known that GP suffers from an uncontrolled growth of the size of individuals,
a phenomenon called bloat. Thus, the team size can not be directly managed by the
system. In Figure 6, the average number of predictors on the inverse problem is reported
for EMean with β = 0.1. The limit, around 200 predictors, is probably due to the
’maximum allowed size of programs’parameter (500 instructions).We have also reported
the number of predictors having a weight wi (almost) equal to zero and the number of
predictors whose weight is positive. We see that around a third of the predictors are
all but eliminated from teams. So, the use of combinations of predictors that take into
account the response quality of each team member gives a way to control team size.
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However, we have seen that the best tuning of β depends on the problem addressed.
Figure 7 shows the weights wi as a function of the predictor errors for different β. We
have limited the error to the range [0, 1]. We see that for small values of β, weights are
almost equal to 1, as for the AMean combination, whereas when β is equal to 100, the
majority of weights are null, as for WTA combination. From Figures 2, 3 and 5, we see
that EMean is able to cover the entire performance spectrum between AMean and WTA.

5 Conclusion

In this paper, our aim is not to compare our work with other learning methods, such
as boosting for example, but rather to improve the performance of stack-based GP
systems. Thus, we start with one of their main drawbacks : they provide many outputs,
that is sub-programs, instead of only one. A naive way to overcome this is to keep
only one arbitrary output as the output of the program. This method exhibits very poor
results, notwithstanding the waste of resources needed to evolve part of programs that
are never used. Keeping only the best sub-program leads to even worse results, as the
system undergoes premature convergence. Taking the arithmetic mean or the sum of sub-
programs outputs gives our system the same performances as a tree-based GP system,
which evolves individual predictors.

The best results we obtain are when the output of the program is a weighted sum of
the sub-programs, where each sub-program receives a weight depending on its individual
performance. This way programs are not penalized by bad sub-programs, since they do
not contribute, or only lightly, to the final output. Moreover, this supplementary degree
of freedom promotes the emergence of dynamically sized teams. Indeed, even if the
total number of predictors in a team is strongly correlated to the maximum number
of instructions in programs, only some of them contribute to the program output and
so really participate in the team. The number of such sub-programs is free. Genetic
operations may cause it to vary, with the introduction of a new "good" sub-program or
the destruction of a former "good" one.

This paper represents the first step of our work and empirical results should be
confirmed by experiments on other problems and theoretical studies. Moreover, some
choices we have made are arbitrary, such as the use of a linear combination of sub-
programs. Other types of combinations, e.g. logarithmic ones may improve perfor-
mances. Also, we need to better understand how the value of β influences performance,
and its effect on team composition.
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Abstract. We describe an approach to understanding evolved programs
for a real world object detection problem, that of finding orthodontic
landmarks in cranio-facial X-Rays. The approach involves modifying the
fitness function to encourage the evolution of small programs, limiting the
function set to a minimal number of operators and limiting the number of
terminals (features). When this was done for two landmarks, an easy one
and a difficult one, the evolved programs implemented a linear function of
the features. Analysis of these linear functions revealed that underlying
regularities were being captured and that successful evolutionary runs
usually terminated with the best programs implementing one of a small
number of underlying algorithms. Analysis of these algorithms revealed
that they are a realistic solution to the object detection problem, given
the features and operators available.

1 Introduction

Genetic programming has been used with considerable success for a wide range
of problems, both toy and real world. In the area of image processing there
have been a number of successful applications to difficult problems. One of the
drawbacks of genetic programming solutions is that the evolved programs are
very hard to understand and can be very big. This makes it hard to sell genetic
programming solutions as many engineers and other professionals, particularly
in the medical area, are very unhappy with black box solutions. They want to
understand the operation of any solution to better appreciate its limitations and
generality.

There has been very little prior work on the problem of understanding evolved
program trees. Most work is focused on finding acceptable solutions to problems
without any major concern for their understandability. However, [1] describes
‘trait mining’, a method of finding sub-trees, or traits, in the evolved programs.
Traits are associated with high fitness and provide some insight into the evolved
solutions. The basic idea is that even if the whole program cannot be understood,

M. Keijzer et al. (Eds.): EuroGP 2005, LNCS 3447, pp. 351–360, 2005.
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being able to understand some of the subtrees means that the evolved program
is not a black box. [2] describes the evolution of classification rules with genetic
programming. The rules are intended to be understandable to humans. This is
achieved by evolving the rules in a predetermined if-then format, rather than as
full genetic programs. [3] describes an approach to finding the underlying reg-
ularities in evolved programs which use pixel inputs for texture discrimination.
A strategy of limiting the function set and penalising large programs was used.
Analysis of the resulting programs revealed that a number of masks of pixel
positions were being used to discriminate textures. Systematic regularities were
consistently being discovered in the different runs, arbitrary positions of pixels
were not being used.

We have recently had considerable success in using genetic programming to
evolve object detection programs for finding orthodontic landmarks in cranio-
facial X-Rays [4]. Orthodontists are not comfortable with genetic programming
and there is a need to explain the evolved programs in ways that are credible
to them. The aim of the work presented in this paper is to determine whether
we can explain how evolved programs work for the object detection problem. In
particular we are interested in:

1. Can we develop a methodology for analysing evolved programs?
2. Are regularities being discovered? If so what are they?
3. Can we express, in some reasonable way, the underlying algorithms in the

evolved programs.

Fig. 1. A digital cephalogram depicting two regions containing the mid nose and sella
landmarks
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square size=14

Features Local regions
μ σ

M1 S1 full square A-B-C-D
M2 S2 left half A-E-F-D
M3 S3 right half E-D-C-F
M4 S4 2 centre columns E-F
M5 S5 2 centre rows G-H

square size=40

Features Local regions
μ σ

M1 S1 shaded region
M2 S2 unshaded region
M3 S3 full square A-B-C-D
M4 S4 top left A-E-o-G
M5 S5 top right E-B-H-o
M6 S6 bottom left G-o-F-D
M7 S7 bottom right o-H-C-F

Fig. 2. The diagrams in the left column depict the feature maps used for the nose and
sella landmarks. The features consist of the mean and standard deviation calculated
for each shape from grey level intensities. The corresponding pictures in the middle
column depict the size of the feature map (shown as the white square) relative to the
image

2 The Object Detection Problem

The object detection problem is to locate, to within 2mm, a number of key
landmarks used by orthodontists in treatment planning. Full details of this
problem can be found in [4, 5, 6]. For this paper we focus on just two land-
marks, an easy one, the tip of the nose and a very difficult one, the sella.
These landmarks are shown in figures 1 and 2. We consider the finding of each
landmark as an independent object detection problem. Using prior knowledge
of facial geometry we identify regions in the picture where the landmark should
be with respect to the edge of the ruler which is easy to find by classical im-
age processing methods. Each of these individual problems is solved indepen-
dently using the method described in the next section. It might appear that
the problem of finding the nose tip would be very straight forward, but this
is not the case due to the wide variation between humans in nose shapes and
various noise effects on the X-Rays.
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3 Finding Object Detection Programs by Genetic
Programming

The basic method is to take an input window of pixels and slide the window
over all positions in the region to find the location of the landmark [4]. This
is similar to the template matching approach in classical vision except that the
template is implemented as a genetic program. The output of the program is
interpreted as the presence or absence of the landmark at the pixel position at
the centre of the window. Since we know that there can be only one landmark
in the region and that it must occur, we use the position with the largest output
as the predicted position of the object.

The evolved programs use a feature set of pixel statistics of regions, or shapes,
customised for each landmark. The features are obtained from a square input
window centred on the landmark and large enough to contain key landmark
characteristics, but not large enough to introduce unnecessary clutter, as shown
in figure 2. For the nose point the input window has been partitioned manually
into the shapes shown and the means and standard deviations of the pixels in
each shape are the features. For the sella point the input window has been seg-
mented into shapes by the use of pulse coded neural networks as described in [7].
The feature values are used as the terminals and the function set is {+,−,×,%}
(% denotes protected division).

A data base of images marked up by an orthodontist is used in training.
To evaluate fitness during training, each program is applied, in moving window
fashion, across each of the training images and the detection rate is computed.
The detection rate is used as the fitness measure.

The method was tested on a number of landmark points, ranging from rel-
atively easy to very difficult. Detection performance on the easier points was
excellent and the performance on the difficult points was quite good [4].

4 Methodology for Analysing Evolved Programs

The evolved programs from the system described in the previous section are large
and difficult to understand. To evolve smaller programs which have a higher
likelihood of being understood we repeat the evolutionary process with:

1. A size penalty for large programs. The fitness function is

f itness = (1 − Dr) × 100 +
P rogram Size

511
× 1

10
, (1)

where Dr is the detection rate.

P rogram Size is the number of nodes in the program and there are 511
nodes in a full tree of depth 9, which is the max depth used in the runs.
The size component represents constant parsimony pressure. The weightings
of the two terms ensures that accuracy is the primary objective and size is
secondary.
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2. A reduced function set. For the nose point we use the two function sets {+}
and {+,−}. By keeping the operators to plus and minus we ensure that an
evolved program will be a linear function of the inputs, possibly making it
less accurate, but hopefully, easy to analyse.

3. A reduced terminal set. For the sella point we first use a terminal set which
contains only the most obviously useful features together with the terminal
set {+,−}. We then extend the analysis to the full terminal set.

5 Analysis of Evolved Programs

5.1 Easy Landmark: Nose

Function Set is {+}: The fittest individual, which was evolved in all 80 evolu-
tionary runs, was:

Output = S5 (2)

Recalling that the position of the highest output is the predicted position
of the object, and noting from figure 2 that S5 is the standard deviation of
the centre 2 rows of pixels, this program implements a reasonable algorithm for
detecting the nose point. Inspection of figure 2 confirms that S5 will be at a
maximum when the input window is positioned over the nose tip. This program
has a detection accuracy of 65.9%. It fails on a number of images, like the lower
image in figure 3, in which there are some edge effects near the nose. However,
it appears that the methodology is producing the best program possible given
the restricted function set.

Function Set is {+,−}: In this situation all of the evolved programs can be
simplified to the form given in equation 3. All αi and βi will be integers.

Output = α1M1 + β1S1 + α2M2 + β2S2 + · · · + α5M5 + β5S5 (3)

Analysis of the best programs evolved in 80 runs revealed the following un-
derlying algorithms:

Output = M1 − S2 − S3 − 2M4 + M5 (4)
Output = M2 − 2S2 − 2M4 + M5 (5)
Output = 2M1 − S1 − 2M4 − S4 (6)
Output = M2 − 2S2 − 2M4 + M5 (7)

Analysis of an Individual Program: The following is an analysis of how the de-
tection program described in equation 4 predicts the position of the landmark
based on the values of features at six carefully chosen positions on an image.
Each position used in figure 3 is indicative of regular patterns that occur in the
training images. The window is located on soft tissue(1), the background(2),
soft-tissue/background edge(3) and centred on the known position of the nose
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Position Output

M1 - S2 - S3 - 2M4 + M5

1 23.3-0.9-1.3-45.8+22.3=-2.4

2 4.5-0.5-0.5- 8.6+ 4.8=-0.3

3 11.6-5.1-3.3-22.4+12.0=-7.2

4 10.2-3.9-0.3-14.2+10.8= 2.6

Highest Err =(1,-1) 9.2-4.7-0.2-10.5+ 9.8= 3.6

5 10.1-3.1-1.4-15.5+10.6= 0.7

6 6.8-1.3-2.7-11.0+ 6.7=-1.5

Highest Err =(1,0) 9.5-3.9-1.8-10.2+10.0= 3.6

Fig. 3. Sample output using detection program, M1 − S2 − S3 − 2M4 + M5, applied to
six different positions. Output is based on features calculated using a greyscale image

landmark(4). Positions 5 and 6 are on an image which has some edge effects near
the nose.

If the program is evaluated when the input window is located on an area of
constant brightness, such as positions 1 and 2, the output of the program is ≈
0. The mean pixel intensities of each of the shapes, Mi, will be approximately
the same and the standard deviations, Si, will be ≈ 0. On edge position (3) the
program output will be negative because S1 and S2 will be large. When the input
window is centred on the true position (4), the program produces a high output
in comparison to the previous positions. If we compare the outputs at positions
3 and 4 we observe that when the input window is located on a diagonal edge
the most significant component for varying the output is terminal M4. If the
input window moves either side of the soft-tissue/boundary, the value of either
S2, the standard deviation of the left half, or S3, the standard deviation of the
right half, will decrease the output because of the negative coefficients. Figure 3
also shows the value of the highest output of the evolved program and the error
in pixels in the x and y directions from the true position.

The analysis is consistent with the graph shown in Figure 4 which is a vi-
sualisation of the output of the program superimposed on a grey level image.
From this analysis we can conclude that the program implements a reasonable al-
gorithm for finding the nose point. A similar analysis performed for equations 5-7
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Fig. 4. Output from individual, M1 − S2 − S3 − 2M4 + M5

reveals that they also implement reasonable algorithms. The accuracy achieved
by these programs is no different from the accuracy achieved by programs using
the full function set {+,−,×,%} which indicates a linear problem.
Analysis of regularly occurring patterns across programs: It is clear that the
function set used contains some redundancy, M1, M2 and M3, for example, are
obviously related. If we remove some of the redundancy by using the relationships
M1 = 1

2 (M2 + M3) and M1 ≈ M5, we obtain the programs shown in the central
column of table 1. The program of equation 4 reduces to the fourth one in this
table. Simplifying the best programs from 80 runs in the same way revealed that
a number of underlying algorithms were repeatedly being evolved. For example,
13 runs produced the program shown in the first line of the table. Also, in all
evolved programs that achieved a 100% detection rate, the sum of the coefficients
of the Mi features used was 0 and the coefficients of the Si features were always
negative.

Figure 5 shows that there is a very large variation at the LISP level in pro-
grams that implement the same underlying algorithm.

5.2 Difficult Landmark: Sella

Due to the complexity of this landmark and the large number of features, we
have carried out the analysis of the evolved programs in two stages. In the first
stage we analyse runs using a reduced terminal set and in the second stage we

Table 1. Frequency of occurrence of detection program in 80 runs

Frequency Program Detection Rate
13/80 1.5M2 − 2S2 + .5M3 − 2M4 100% (82/82)
13/80 1.5M2 − S2 + .5M3 − 2M4 − S4 100% (82/82)
7/80 0.5M2 − S2 − .5M3 − S3 + S5 98.7% (81/82)
6/80 M2 − S2 + M3 − S3 − 2M4 100% (82/82)
4/80 −S1 + M2 + M3 − 2M4 − S4 100% (82/82)
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(- (- M5 S2) (+ M4 (+ S2 (- M4 M2))))

(- (+ (- M5 (+ M4 (+ M4 (- S2 M2)))) S5) (+ M1 S2))

(+ (+ (+ (- (- S5 M4) S2) (- (- (- S2 (+ S2 M3)) M4) (+ S1 S5)))
(+ M4 M3))(- (- (+ (+ M4 M5) (+ (+ M5 S1) (+ M3 M1))) (+ M3 M1))
(+ (+ S5 (+ (+ M4 M3)M4)) (- M2 (+ (- M2 S2) (+ M1 M2))))))

Fig. 5. Programs equivalent to 1.5M2 − 2S2 + 0.5M3 − 2M4

use the full terminal set. In both stages we use the function set {+,−}. Runs
with just {+} for the function set did not result in programs that were accurate
enough to be worth analysing.

Reduced Terminal Set. The full feature set used for this landmark are shown
in the lower half of figure 2. Features M1, M2, S1 and S2 were obtained from a
segmentation of training images using pulse coupled neural networks [7] and are
clearly the most discriminating features. Due to the large number of features we
first analyse runs which use just these four features. After performing 80 runs
and simplifying the evolved programs, we found that the best programs were all
variants of two underlying algorithms:

Output = 5M1 − 5S1 − 5M2 − 2S2 (8)
= M1 − S1 − M2 − 0.4S2

Output = 3M1 − 3S1 − 3M2 − S2 (9)
≈ M1 − S1 − M2 − 0.3S2

Programs implementing equation 8 achieved a test accuracy of 70.7% while
programs implementing equation 9 achieved a test accuracy of 69.5%.

Analysis of an Individual Program: We performed similar analyses to that shown
in figure 3 for equations 8 and 9. As before, the analyses revealed that the
algorithms are reasonable ones in the context of the window sweeping through
the image with the position of highest output chosen as the predicted position of
the sella landmark. In summary, features M1 and M2 assist with differentiating
between the true position and a scene of constant brightness by the positive
output of M1−M2, while S1 and S2 are used for differentiating between cluttered
scenes and the known position.

Analysis of Regularly Occurring Patterns Across Programs: As for the nose
point, in all of the best evolved programs, the sum of the coefficients of the Mi

features used was 0 and the coefficients of the Si features were always negative.

Full Terminal Set. Eighty evolutionary runs using the full set of fourteen fea-
tures shown in figure 2 were carried out. The linear functions shown in Equations
10-13 are the fittest programs from four randomly chosen evolutionary runs.

Output = 5M1 − 2M2 − S2 − 2M3 − 3S3 − 2S4 + S5 − M6 + S7 (10)
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(a) 5M1 − 5S1 − 5M2 − 2S2 (b) 5M1 − 2M2 − S2 − 2M3 − 3S3
− 2S4 + S5 − M6 + S7

Fig. 6. Visualisation of output landscape, sella point, reduced function set (a), full
function set (b)

Output = 6M1 − 2S1 − 5M2 − 3S2 − M3 − 3S4 + M5 + S5 (11)
Output = 3M1 − 3S1 − M2 − 4S2 − M3 + 4S3 − S4 − M6 + S7 (12)
Output = 6M1 − S1 − 5M3 − 3S3 − 2S4 + S5 − 2M6 + M7 + S7 (13)

Analysis of an Individual Program: Comparison of these functions with equa-
tions 8 and 9 reveals that equation 11 could be considered as a refinement of
equation 8. However, other similarities are difficult to find. Placing the input
window in a number of positions and computing the outputs as before, shows
that the output is highest around the true position of the landmark, but, unlike
the previous two cases, does not reveal any intuition about why the program
works.

Analysis of regularly occurring patterns across programs: After performing sim-
ilar simplifications and substitutions as for the nose point, we found that the sum
of the coefficients of the Mi terms in an equation was 0, as in the previous two
situations. We have not been able to determine the significance of this, however
the regularity is striking. However, the coefficients of the Si were no longer all
negative, as before. We have examined three dimensional views, such as figure 4,
of program output. Many of these views are minor variations of the landscapes
shown in figure 6. This provides additional evidence that the same underlying
algorithms are being evolved.

6 Conclusions

Our aim was to determine whether we could develop explanations of how the
evolved programs work for an object detection problem. We have succeeded in
this to a large extent. The programs no longer need to be presented as some
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kind of black box that works by magic. We have shown that a methodology of
simplifying function and terminal sets and simplifying the resulting programs to
linear functions yields insight into the underlying algorithms implemented in the
evolved programs. We found that underlying regularities were being consistently
discovered in many repeated runs and that the regularities could be expressed as
linear functions which were realistic in the context of the input window sweeping
across the image to find the point of interest.

In the context of this particular object detection problem, the methodology
works well for up to 4 terminals. For this number of terminals it is possible to
comprehend the inter-relationships between the components of the linear func-
tion in the context of the sweeping process. For more than 4 terminals this is
very difficult. However, the fact we have been able to identify the underlying al-
gorithms for simplified problem instances gives us confidence that, in situations
where there are too many terminals and functions to permit understanding, that
the evolved programs are still capturing regularities of the domain.

We were surprised that the accuracy of the best programs did not drop with
the reduced function set. It appears that genetic programming is very good at
finding linear models for these kinds of problems.
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Abstract. This paper investigates the robustness of Run Transferable
Libraries(RTLs) on scaled problems. RTLs provide GP with a library
of functions which replace the usual primitive functions provided when
approaching a problem. The RTL evolves from run to run using feedback
based on function usage, and has been shown to outperform GP by an
order of magnitude on a variety of scalable problems.

RTLs can, however, also be applied across a domain of related prob-
lems, as well as across a range of scaled instances of a single problem.
To do this successfully, it will need to balance a range of functions. We
introduce a problem that can deceive the system into converging to a
sub-optimal set of functions, and demonstrate that this is a consequence
of the greediness of the library update algorithm.

We demonstrate that a much simpler, truly evolutionary, update strat-
egy doesn’t suffer from this problem, and exhibits far better optimization
properties than the original strategy.

1 Introduction

Run Transferable Libraries (RTLs) [7] have recently been introduced as a method
for scaling evolutionary computation methods by performing learning across
many runs. An example of an RTL implementation applied to a general Genetic
Programming system [2] has shown that the system can acquire knowledge about
a problem or problem domain as it is iteratively applied to different problem
instances.

By implementing an evolutionary outer loop around a GP system, RTLs allow
information gathered in specific runs to influence future runs via the manipu-
lation of the library contents, which are made available to GP in place of the
usual functions set. In effect, potentially useful motifs, patterns or functions are
evolved. RTL systems search for a library from which an evolutionary system
can produce an answer with less effort than a system using a standard function
set used by GP. In this view, RTLs are similar to programming libraries used
by human programmers. A library of functional primitives represents the API
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through which a task can be accomplished. A well designed library allows for
“better”/brief/less-complex programming to accomplish the tasks targeted by
the library.

A key component within an RTL system is the library maintenance/evolution.
Each time an RTL system is applied to a problem instance the library may be
updated. An RTL update algorithm, based on the usage counts of the library
members, performs reproduction and variation operators on the members, in-
creasing the number (and hence, initial bias towards) of good performers, re-
moving those that didn’t enjoy a lot of use and creating new functions based on
the good performers using variation operators.

Previous work, using a basic library update algorithm, demonstrated that
RTL enabled GP could solve the Parity and Multiplexer problems with orders
of magnitude less effort than a standard GP system. Each of these classic ADF
friendly test problems was employed to test the ability of the library to acquire
the functional knowelege of the problem. However, the problems can be made
much easier by favorably biasing the selection of the single correct function;
XOR in the case of Parity, and IF-THEN-ELSE in the case of Multiplexer,
which RTL facilitates. Availablity of useful functions alone does not necessarily
make the problems trivial, rather it is a combination of first discovering of the
function, and then the update algorithm’s subsequent biasing of the library to
that function so that it is over represented in the initial function set.

In this paper we test the RTL update algorithm on a significantly more
difficult problem, a combination of a Parity problem and a Majority problem.
With this we can check the capability of the algorithm to maintain a diverse set of
functions. Interestingly, however, it turns out that a phenomenon of destructive
feedback can occur, which forces the library to a suboptimal point in the library
configuration, a local optimum.

It is hypothesized that this destructive feedback is caused for the most part
by the use of structural information from a run, that is, the counts of function
usage. In order to examine this, a very simple alternative algorithm is developed
that looks at the performance of the entire library as a whole, rather than trying
to optimize individual parts of it.

2 Background

Programming libraries are an important tool for any programmer. They provide
collections of related functions that can be helpful when decomposing tasks.
Analogies for GP include ADFs,[3] [4] GLib [1], ARL [6], amongst others. Typ-
ically, these systems generate modules in parallel with the population that use
them, although Subtree Encapsulation [5] system attempts to use the effort from
each run to bootstrap the following one.

See [7] and [2] for comprehensive review of module acquisition methods. As
described in section 3, the libraries in these cases turned out to be seething with
activity, from the time that the most useful function was initially discovered
until the library was suitably biased towards it. This is because, as the library
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converged towards an optimal bias, other, sub-optimal but still useful, functions
fought for control of the library, and these struggles often continued long after
the library reached its maximal capabilities.

The concept of Run Transferable Libraries (RTLs) overturns the notion of
independent runs for GP. The basic insight that inspired the approach is that
in order for a GP to scale from simple to more difficult problems, some method
needs to be in place that can transfer knowlege, accrued in previous runs, to
further runs on the same problem, as well as on different problems from the
same domain. In the RTL approach, this knowledge takes the form of a library,
a set of concise functionality that provides functional bias to individual runs.
Particularly, it is hypothesized that gathering knowledge on simpler problems
in a problem domain can be useful to tackle harder, more interesting problems.
Previous work made use of a sequential update mechanism that harvests usage
information from a particular run and transmits it to further runs. A complete
description of this mechanism can be found in [7].

A generic RTL implementation provides algorithms for library member refer-
ening as well as library contents maintainance. These provide for the execution
of the library member code and the timing and style of updates to the library
contents. An RTL system has the ability to cause evolution of the library at a
time scale which is separate from the the evolutionary time scale of the solving
a problem instance. The purpose of evolving/changing the library is to change
the landscape of primitives available to the next run, enhancing the system’s
ability to reach a solution to a problem instance with less evaluations. This work
continues to use the basic framework from the the previous system.

The library is initially made up of randomly generated functions of various
arities (typically 0 to 3), each of which can be addressed by a tag, usually,
but not necessarily, represented by a real-valued number. These functions are
constructed using the function set typically associated with the problem at hand,
but do not contain any problem specific terminals, instead using parameters
where appropriate. The individuals are constructed from the terminal set and
Dynamic Linking Nodes, which are effectively pointers into the library. These
DLNodes take from 0 to 3 arguments as appropriate. When an individual is
evaluated, each DLNode is replaced with the corresponding library member.

In contrast with the system used in [2], the system used here is an RTL
system that is limited to the domain of induction of boolean functions. It was
designed to remove the need to synthesize functions, in order to study selection of
functions. This system implements all possible arity 1,2 and 3 boolean functions
in the GP system in the form of lookup-tables. This leads to a constant function
set consisting of 4 + 16 + 256 = 276 possible functions. An RTL consists simply
of 276 floating point numbers, representing proportions of occurance of the 276
functions. In the individual runs, these proportions are used during initialization
and mutation, thereby mimicking a library of multiply occuring functions. The
update routines manipulate these proportions to model the changes in the library
over many runs.
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Fig. 1. (Left) Number of individuals needed to be processed to obtain a solution with
99% probability on the parity problems using a library trained on parity 4, and applied
to higher parity problems. As a benchmark, the results presented by Koza with ADFs
are drawn as straight lines. (Right) number of individuals needed to be processed to
obtain a solution with 99% probability on the 6-multiplexer problem using a population
of 500. Koza reported 4,478,500 using a similar population. All results are averaged
across fifty independent libraries

The update routine described in detail in [2], is implemented in this sys-
tem as a simple manipulation of proportions: during the run, the usage of the
functions are tracked and proportions are increaased or decreased according to
their usage; using an exponential moving average to wash out initial bias. Vari-
ation is simulated by maintaining a low background proportion of each possible
functions.

3 Library Convergence

RTL was initially tested on a number of classic ADF problems. Figure 1 shows
how the system performed on parity and multiplexer

For the parity problem, an initially random library was trained on parity-4
for 50 iterations (serial GP runs), and then subsequently tested on a range of
problems from parity-5 to parity-10, although there was no learning permitted
during testing. That is, each of the higher parity problems was tackled using the
same library. This set of experiments was to test how well a library could scale
across different problem instances when trained on a simple version.

Even as the difficulty of the problem was scaled up, the RTL enabled method
was usually able to solve the problem an order of magnitute more quickly than
standard GP with ADFs. Particularly when using problems of smaller scale to
prime the library, the performance on larger problems was enhanced.

The key to the success of RTL on these problems was the identification of
useful functions (XOR in the case of Parity, IF-THEN-ELSE for the Multiplexer)
early on, and their subsequent application. As the library was trained, it became
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more biased to these functions so that they were more common in the initial
generations of individual runs, and so the performance kept improving.

If we wish to apply RTL to larger scale problems, it is reasonable to assume
that it will need to maintain a balance of functions in the library. To this end,
we introduce a new, synthetic problem, which we refer to as the Mix problem.
A Mix problem requires individuals to solve two (or more) related but distinct
problems, and is easily scalable in terms of the number of problems required to
solve, and the size of the problems.

Much previous work has looked at the n-parity problem, as this can easily be
scaled simply by increasing the number of inputs. Another popular test problem
for module acquisition strategies is the multiplexer problem, which can also be
easily scaled, but not with the same kind of fine grained control as parity, because
not all numbers of inputs are legal test cases for the multiplexer, i.e. three, six
and eleven inputs can be used for multiplexers, but not four, five, seven etc.

As well as parity, we use a boolean problem that can be scaled in almost
as fine a grain manner as parity, the Majority problem. Majority takes an odd
number of inputs and returns whichever value is in the majority. Thus, a Mix-
2-X problem is a combination of two problems, each of which have X inputs.
All test cases will have X + 1 inputs, with the extra bit indicating to which
problem the test case belongs, effectively forcing the individuals to perform a
multiplexing operation also.

The optimal function for the Parity problem is known to be XOR. Once it has
been discovered, the problem can be solved relatively easily through the judicious
application of this function. Similarly, an optimal Majority function also exists,
which we term the Majority-3 function. This arity three function takes three
arguments and returns whichever is in the majority. Typically majority solutions
are larger than parity solutions, because the inputs need to be used multiple
times to solve the problem. For the Mix problem, it is not quite clear what the
optimal solution needs: even though the problem is constructed in such a way
that it is solvable with a mix of XOR and Majority functions, it is quite possible
that other strategies are viable.

3.1 Running the Update Routine on the Mix Problem

1500 full library runs of 50 iterations were performed on the Mix-2-5 problem.
The GP system using the library used a population size of 500 individuals for
50 generations. This amounts to 1,250,000 individuals evaluated per library run,
and 1,875,000,000 individuals evaluated in total. At each iteration the best of
run was recorded. As a control run, 1000 runs of the GP system with an initial
uniform bias were performed, which lead to an estimated mean performance
of 53.1 +/- 0.02 for a ’standard’ GP system. The average performance of the
library is displayed in figure 2. Although the library improves upon the baseline
performance, the improvements quickly level off, and actually decline when the
run is prolonged.

Closer inspection reveals that a local optimum is found in the search space,
the solution to the Majority-5 problem, which only uses Majority-3 primitives.



366 M. Keijzer et al.

This function only uses 13 nodes, and scores 54 hits (84% accuracy), as it also
scores 22 points on the Odd-Parity-5 part of the problem. The Majority-5 solu-
tion functions as an attractor. When it is found in a run, it reinforces the use
of the Majority-3 primitive maximally, to the detriment of other functions. The
reinforced library in its turn makes it more likely to find the Majority-5 solu-
tion, which leads to a further round of reinforcement of the Majority-3 primitive,
ultimately leading to a library containing such a high proportion of Majority-3
functions that no other solution will be found. Libraries that have surpassed
the performance level of the Majority-5 solution are also likely to get trapped,
because in order to solve the problem they need a fair proportion of Majority-
3 primitives. This also makes it more likely to induce the Majority-5 solution
leading to an ever-present risk of becoming trapped in the attractor.

3.2 Reducing the Feedback Strength

We hypothesize that the prime cause of the strength of the attractor lies in
the tight coupling between usage of the primitives and reinforcement in the
library. This direct feedback loop between primitive usage and library update
without regards to the performance of the particular run seems to lead to a
situation where a library can easily get worse at solving a single problem, let
alone a problem class over time. Altering the update routine so that it takes
into account the performance of the individual runs is a possible route to take,
but this does lead to a further set of parameters and issues when applying the
library on new problems. It will also not solve the issue of getting trapped in the
local optimum at the onset. To investigate the feasibility of guiding the library
using performance metrics only, we implemented a simple ES-type of outer loop,
where the content and proportions of the library functions is evolved without
looking at the usage of the elements in the individual runs at all. It is thus a
pure evolutionary meta-algorithm for optimizing the library, where an individual
fitness case is a single run of a GP system using that library.

The ES-style algorithm forms a very simple wrapper approach around the
main run of the system. It implements an (1+5) strategy, where the current
library (a set of numbers designating proportions of functions), is mutated 5
times using:

p ← exp(log(p) + N(0, 1))

All six libraries, the parent and its offspring, are evaluated a single time on
the problem at hand, and the library that has best performance is chosen for
the next iteration. There is therefore no direct interaction with the run through
module harvesting and/or updating, which makes this approach significantly dif-
ferent from our previous approach, but also from Module Acquisition, ADFs and
GLib. Any and all feedback from the individual runs is transferred through the
competition between six libraries that are allowed to evolve a solution a single
time. For performance reasons this very simple strategy is used, but with avail-
ability of computational resources it is clear that the method can be extended
with a significantly larger population of competing libraries.
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Although true synthesis of new functions is not implemented in the system
due to the presence of all possible functions up to arity 3 in the library, it seems
straightforward to implement such a system undergoing mutation and crossover
on the level of library functions. Future work will address this; the idealised
situation of having all possible functions is used here to test if the deceptive
nature of the mix problem can be overcome by decoupling the evolving library
and the problem-solving runs even further than previously.

4 Experiments

Our first set of experiments were designed to test the new library ES-style update
strategy. For this we used a Mix-2-5 problem, with a population of 500 running
for 50 generations. A meta-run of the ES algorithm consists of 50 generations,
leading to 300 evaluations (GP runs) per library run.

Figure 2 (left) shows the performance of the system using the greedy update
strategy, while figure 2 (right) describes the performance using the new, ES-style
strategy. The greedy updating strategy is quickly lead into the deceptive local
optima and, after a peak in performance after around 15 iterations it starts
to deterioate. The error bars show that this is not accidental. Clearly, this is
something that should never happen with RTL, as this means that even useful
functionality can be washed out of a library by inapropriate feedback. The ES
approach, on the other hand, does not suffer from this problem, and the perfor-
mance of the system is still increasing even after 300 evaluations. In sequential
terms, this is equivalent to 15,000 generations, which makes it all the more im-
pressive that RTL is still improving even after all that time. Even though the ES
run uses 300 evaluations, it is already abundently clear that the system improves
upon the greedy routine even after 50 evaluations (appr. 8 meta-generations).
The undirected variations from the ES-algorithm steer the libraries away from
the local optimum.
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Table 1. Comparison on mean hits after 50 library evaluations for the ES and update
routines. The difference in mean hits is tested for significance using a two-sided t-test

Experiment Best P value
Mix-2-5 ES 10−12

Parity 9 greedy 0.49
Multiplexer 6 greedy 0.20

A second set of experiments was performed to test how well the ES strategy
performed on the original problems (that is, Parity and Multiplexer) in order
to see how it would handle situations that so clearly suited the greedy strategy.
Also here the ES system performs adequately and inspection of the libraries re-
veals that the contents show a much greater diversity of functions than with the
update routine. This diversity comes at a cost however, the ES algorithm being
slower than the update mechanism to focus on the appropriate functionality. To
check the differences in performance between the two methods, 500 runs of 50
iterations of the update routine are tested against the ES-style algorithm. The
results of the test can be found in Table 1. Even though the standard update
routine performed slightly better on the Multiplexer and Parity problems than
the ES algorithm if we concentrate on the performance after around 50 library
evaluations, the performance improvement is statistically inconclusive. The per-
formance difference on the Mix problem however is however highly significant.

The fact that the greedy update scheme performs better (although not sta-
tistically significantly so) on the original problems is simply a consequence of
a greedy algorithm performing better on a problem with a clear path to the
optimum. However, the ES style algorithm is considerably more robust, per-
forming extremely well on the difficult problem, yet still capable of attaining a
comparable result even on these, more direct problems.
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5 Conclusions and Future Work

The paper has described an alternative method for updating Run Transferable
Libraries, a method for scaling GP by transferring knowledge across runs. RTLs
operate with an inner loop (normal GP) and an outer loop (library maintenance)
which give the system a combination of characteristics from both Darwinian
and Lamarckian evolution. This is possible because the libraries endeavour to
capture some of the salient characteristics of successful individuals from earlier
runs, effectively Lamarckian evolution, with a view to seeding standard runs that
evolve in the normal way (Darwinian evolution).

This paper presented a boolean problem, a mix of Parity and Majority, to
test the ability of a RTL to maintain a diverse set of different functionality in a
library. It was found that for this particular problem, the greedy update routine
used in previous work was susceptible to begin trapped in a local optimum: the
solution to the Majority problem. It will even get trapped when, on the surface,
it has already surpassed the level of performance of this local optimum. Closer
inspection reveals that the feedback loop between library usage and library re-
inforcement is the most likely cause of this sub-optimal behaviour. To tackle this
issue, a true evolutionary meta-algorithm was developed that receives feedback
over individual runs only through the performance of the runs: no updating
according to usage and also no module-harvesting is performed. It is experi-
mentelly verified that this method does not get trapped in the local optimum,
and also that it performs adequately on problems where a greedy strategy is
more optimal.

We demonstrate that, on this difficult problem, direct feedback to the library
about the structures in use from individual runs can be detrimental to the search
efficiency. It is shown that the performance of the library on individual runs
is a critical component in improving the search. However, the performance of
individual runs is a stochastic quantity, as it is subject to all stochastic effects
present in standard GP systems. It was shown that a very simple strategy, where
a library is tested using a single run is adequate to solve a range of problems in
the boolean domain.

It was further demonstrated that, on simpler problems, where the best strat-
egy for the library is to converge on a single function, there is no statistically
significant difference in the performance of the original and new library update
systems.

5.1 Future Work

The investigations in this paper give some indications that the intuition that
using detailed information from a run of a GP to configure a library useful for
other runs may be misguided. GP is a system that is not 100% reliable and using
the results of a GP run as a starting point for another run might not be the best
approach. The alternative to this approach is to view the process of creating a
library as an optimization problem in its own right, where the library evolves
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and varies in an independent manner, only using feedback in the form of the
library’s capability in solving the problem at hand.

Initial work [7] has been carried out on identifying the quality of the online
performance of the libraries, in which it was shown that the size of the best of
run individuals produced by a library, relative to others produced by a similar
library, can be used to roughly gauge the generalisation properties of the library.
Although it was demonstrated in this paper that there was no statistically sig-
nificant different between the two update methods on the simpler problems, it
could be the case that there may be situations where the original, greedy method
may be advantageous. The ability to determine the generalisation qualities of a
library would facilitate the construction of a hybrid system.

All our results to date have indicated that RTL has the potential to scale in
ways normally unassociated with Evolutionary Computation. Our next priorities
will be to examine increasingly larger Mix problems and to examine real world
domains for their applicability to RTL.
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Abstract. We examine a model genetic system that has features of
both genetic programming and genetic regulatory networks, to show how
various forms of degeneracy in the genotype-phenotype map can induce
complex and subtle behaviour in the dynamics that lead to enhanced
evolutionary robustness and can be fruitfully described in terms of an
elementary algorithmic “language”.

1 Introduction

Evolutionary algorithms (EAs) have been applied with a remarkable degree of
success to a large variety of problems. However, this is often done with little or no
understanding of the dynamics of the system, and practitioners often find them-
selves unable to explain why a particular tweak has apparently improved their
system. Features such as degeneracy and neutral evolution are generally accepted
to aid evolution, but little detailed work, particularly in Genetic Programming
(GP), has been carried out to investigate how GP exploits these features (with a
few notable exceptions [1]). This paper presents a study in evolutionary dynam-
ics, demonstrating how a detailed analysis detects complex and subtle structure
formation. Phenomena such as competing conventions, robustness and redun-
dancy are examined and we demonstrate how it is natural to describe these
phenomena in the framework of natural language.

In section 2 we describe the representation of our system, showing how it has
all the salient features of GP systems, as well as a Genotype-Phenotype map
(GPM) inspired by genetic regulatory networks. We also describe the different
types of degeneracy inherent in the system. Section 3 takes an in depth look at
a representative run, illustrating some surprising strategies that are adopted by
the system. The paper concludes with a summary and discusses areas in which
our system can be used to develop a deeper understanding of bloat, degeneracy
and neutrality, all of which are crucial to the development of more robust EAs.
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2 Representation

The representation we use is based on two existing systems; Grammatical Evo-
lution (GE) [2] and that of [3], where a GPM inspired by gene expression models
and the phenomenon of cellular division was used. Both exhibit genetic redun-
dancy: GE via a degenerate mapping scheme, where many codons map to the
same item, while in [3] the redundancy was at the gene expression level, in that
only a certain proportion of genes from an individual needed to be expressed to
produce a fully specified phenotype.

The underlying representation is similar to GE in that we employ a binary
string representation, but in this case, a fixed length string is used. The genotype
consists of Ng genes, with each gene consisting of Nc codons, where each codon
takes a symbolic value taken from an alphabet of size Na. In our experiments
we consider Nc = 4 and Ng = Na = 8, so each codon is described by three bits.

The first step is to transcribe the genome from the binary representation to
eight genes of four codons each. Once that is done, the first gene, known as the
switchboard gene, establishes which genes are inhibited or promoted, by using
each of its four codons as indexes to the promoted genes. Then, in a manner not
entirely dissimilar to cellular growth, the initial structure is replaced with a new
one, consisting of four genes. Fig. 1 illustrates this process.

Once the activated genes have been identified, the system reverts to a stan-
dard GE type mapping, with each codon being used to make a choice in a
grammar. Consider the grammar below, with each production rule numbered.
As the codons are represented by three bits, each decodes to a value from 0 to 7.
This is referred to as a closed grammar [2], that is, there is only one non-terminal
and, hence, just a single context.

<e> :: = tanh(<e>) (0) add(<e>,<e>) (4)
tanh(<e>) (1) add(<e>,<e>) (5)
tanh(<e>) (2) X (6)
tanh(<e>) (3) 0 (7)

Consider the following individual, already reduced to its activated genes:

4567 1623 0021 4401

Each codon will always make the same choice, e.g. codon 7 will always perform
the mapping e -> 0. The mapping steps are as follows:

0 2 7 7 7 2 1 04 3 6 1 4 0 0 7

4 0 0 7 4 0 0 70 2 7 7 7 2 1 0

........
0 1 2 7........

Fig. 1. An example of the switchboard gene in operation. Each codon in the switch-
board gene (in the current version, always located in the first position) acts as an index
into the entire genome. Notice how this particular switchboard gene indexes itself
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4 -> add(e,e)
5 -> add(add(e,e),e)
6 -> add(add(X,e),e)
7 -> add(add(X,0),e)
1 -> add(add(X,0),tanh(e))
6 -> add(add(X,0),tanh(X))

Notice that only six codons are used for the mapping; in the case where all codons
have been used and still non-terminals remain, a fitness of zero is given. This
straightforward mapping scheme permits us to use a more convenient notational
representation to facilitate human interpretation of codons. That is, a shorthand
for each codon value can be inserted as follows: 0, 1, 2, 3 → h; 4, 5 → +; 6 → X
and 7 → 0. Thus, the individual above can be rewritten as:

++X0 hXhh hhhh ++hh

We refer to genes described in this way as words. Because only six codons
were used, we could, using schema notation, describe the above “sentence” as

++X0 hX** **** ****

Notice that the second word is not made up of four distinct codons/letters. More
generally, the last word used can vary in length from one to four letters.

2.1 Neutrality

Degeneracy leads to the existence of neutral networks [4], where individuals from
different areas in the search space have the same fitness.In this work degener-
acy exists at several levels; that is, there are several ways of describing the same
functionality, e.g. add(X, 0) and add(0, X). Operators are neutral when the indi-
vidual they produce is genetically different to the individual that they operated
on, but phenotypically the same. Point mutation can be neutral at several of
the levels above, e.g. changing a codon value such that it still selects the same
rule as before, changing a value on the switchboard gene so that it generates the
same word as before, but from a different gene, etc. It is also possible to perform
neutral crossover.For example, crossover might only effect non-activated genes,
both parents might have a copy of a required gene, etc.

2.2 Gene Expression as a Language

The kinds of words that one would expect to be produced by this grammar
depend on the fitness function. Consider the function f(X) = 4X; this can be
described by using a number of different sentences.One possible solution is:

+++X XXX*

This particular sentence maps to a minimal solution of (+(+XX)(+XX)). An-
other solution, which maps to the same phenotype is :

+X+X +XX*
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Notice how these sentences are fundamentally different because their first words
differ. This does not suggest a lack of robustness, however, as one would not
expect a single evolving population to balance two such different solutions at the
same time for very long, although, as described below, it is possible for a number
of distinct optimal solutions to appear throughout a run, often competing with
each other for dominance of the population, until one becomes extinct.

The role of modularity in most complex problem solving systems, including
nature, cannot be over estimated. Difficult problems are often best solved by
decomposing them into a set of smaller ones, each of which can be solved more
easily than the whole. Similarly, simple modules or strategies which can be reused
several times, either on different problems or while solving a single problem are
likely to be preferred over more complex ones. Consider the individual:

+++X +++X X000 X000

This maps to (+(+X(+(XX))(+00))(+0X)), and can be reduced to 4X.

3 Results

We applied the system to the problem of performing symbolic regression on
the function f(X) = 4X. By normal GP standards, this is a trivial problem
which one would expect to appear in a reasonably sized population with a good
initialisation scheme. However, we are concerned with making a detailed analysis
of the dynamics, and a simple function like this keeps the analysis tractable.

In total 30 runs were conducted, all of which discovered an optimal solution.
Typically, the solutions initially consisted of three or four expressed genes, but
shorter solutions almost always appeared, reducing the length to usually two or
sometimes three genes. Repeated activation of the same gene was ubiquitous.
Typically, each run discovered several ways to represent an optimal solution. A
population of 100 individuals was used with a mutation rate, implemented at
the bit level, of 0.01. One-point recombination was used with probability 0.9
and restricted to occur only at the boundaries between genes. For selection, a
rank-based method was used, where the ranking was applied only to individuals
that successfully mapped onto syntactically correct expressions.

3.1 Description of Algorithmic Language

In this section we consider a detailed description of a particular run in order
to show the complexity of the dynamics associated with the GPM, even in the
case of our very simple search problem. With the production rules specified in
Section 2, starting off with a random population one finds, as expected, that the
initial codon frequencies are approximately: h = 50%, + = 25%, X = 12.5% and
0 = 12.5%. Later on, however, one sees structure begins to emerge - for instance,
usage of codon h is significantly less over the majority of the run, while usage
of codon X is significantly greater, as it plays a useful role in fit solutions. With
codon 0 there is a greatly increased usage over the middle part of the run, for a
reason that will become apparent shortly.
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Fig. 2. Gene activity per generation. The graph plots the percentage of individuals per
generation that have a particular gene activated

As on the switchboard gene the distribution of codons is random, one finds
initially a random distribution of activated genes, i.e. that any gene is active
on average in 50% of the population. Later on, however, gene activity patterns
emerge with more structure, as can be seen in Fig. 2. Very early on in the evolu-
tion an ordering convention is arrived at, whereby the content of the switchboard
gene is largely fixed, with more than 90% of the individuals activating genes 5
and 1. Interestingly, there is a redundant usage, whereby these codons are very
frequently repeated in the switchboard. As we shall see this leads to enhanced
robustness. At generation 25 more than 95% of switchboard genes in the pop-
ulation are of the form 5 ∗ ∗∗ while over 60% are of the form 55 ∗ ∗. Similarly,
92% possess ∗ ∗ 1∗ and 83% possess ∗ ∗ 11.

In Fig 3 we show the different codon frequencies in gene 5 as a function of
time. Before an optimal solution is found gene 5 consists of almost 50% of codons
of type +, i.e. producers. This is about double what would be expected with a
random distribution. Similarly, block 1 contained nearly 90% more codons of type
X than would be expected by chance. Gene 5 is clearly the most important, or
“core”, gene as its codon content is so stable that there must be strong selection
pressure in order to maintain this stability. Gene 1 by contrast showed more
variation, though the important role played by codons X and 0 was evident.
Note that when expressed, gene 5 precedes gene 1, hence, as expected, the system
puts more producers to the left and more terminals to the right.It is interesting
to note that optimal solutions are detected from time to time but it is not
until after generation 200 that they become established in the population. Also,
fitter solutions tend to use only two different active genes - 5 and 1 - and three
expressed ones - 551∗ - the final non-coding tail not being expressed. The most
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Fig. 3. Grammar choices for gene 5 per generation

common phenotype is f(X) = 2X + 2 tanh(X), that results from a combination
of a repeated producing gene 5 = + + hX and a consuming gene 1 = XX00.

At generation 213 optimal solutions finally begin to successfully propagate
through the population. At this point the number of + codons in gene 5 increases
by 50% while the number of 0 codons in gene 1 doubles. The first solution found
is shown below. Notice that the switchboard block appears twice, once in decimal
form to facilitate reading, and once in the normal form, + + hh in this case.

5533.++hh.XX00.0+h+.X000.++hX.+++X.++Xh.+Xhh

(+(+(+X(+(+(+X X ) 0) 0)) 0)) X) = 4X

Note that this founder does not activate gene 1 as the majority of the population.
It is based on the same switchboard template 55 ∗ ∗ of previous suboptimal
solutions, but is achieved through a single mutation of the 5 gene + + hX →
+++X which, repeated, combines with gene 3 = X000 to give 4X. 5533 however,
is not the dominant switchboard gene, that role being kept by 5512, and therefore
the dominant optimal solution had 5512 as a founder switchboard. Moreover,
with this switchboard, in general all four genes 5, 5, 1 and 2 are expressed, as
can be seen in the huge increase in use of gene 2 after generation 200 in Fig. 2.

Given that all these solutions are optimal one might expect that, on aver-
age, evolution preserves their structure, apart from the effect of neutral drift.
However, this is not the case. For the next 500 generations this solution spreads
and evolves. Early on, among the optimal solutions, in gene 1 over 60% of the
individuals have a + codon. Later on this percentage has dropped to zero!There
is no direct selection pressure for this, as we are talking about the structure of
this gene only for optimal individuals. In terms of effective fitness [5] however,
there is a clear explanation: any + in gene 1 means that in order to maintain
an optimal solution more codons from gene 2 must be expressed. As these are
subject to mutational damage there is an effective selection pressure to make the
solution more robust within the context of a repeated “core” gene, +++X, that
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needs a minimum of 5 more terminal codons. The elimination of the + codon
reduces the total number of codons that are expressed in the optimal solutions
and therefore increases robustness against mutational damage.

At generation 704 a new optimal solution appears - still based on the switch-
board gene 5512 but with a mutated core gene 5 of the form +X + X. An
immediate advantage of this solution is that it uses fewer expressed codons and
therefore will be more mutationally robust. However, another complementary
and more subtle effect appears: 55 ∗ ∗ in the switchboard gene requires a final
terminating 0 codon in the first position of the following gene (or some other
codon combination, such as hh0∗, that evaluates to zero) in order to provide an
optimal solution. In the initial population, when +X +X solution is first found,
this is provided by gene 1, associated with the switchboard 551∗, as more than
50% of the individuals that used the + + +X core gene already had a 0 codon
in the first position there. However, of the 67 optimal individuals at generation
704 only 5 had a 0 first position codon. 300 generations later, an examination of
genes 4, 6 and 7, which are neither activated by the switchboard nor expressed,
show that, from the 246 such genes associated with the 82 optimal individuals,
101, i.e. 41% have a 0 in the first position. This is almost three times the per-
centage (15%) expected if the distribution were random! What is the reason for
this extraordinary self-organization - the origin of our somewhat tongue-in-cheek
title? The answer is that from 551∗ a mutation on the switchboard of the third
codon to activate any gene that has a 0 codon in first position would result in
an optimal string. In this sense many of the non-activated genes are acting as a
genetic “reserve” to protect againstmutations of the switchboard gene.

As in [5] one can summarize the algorithmic “language” that has emerged.
This is an evolving language, in the sense that the system continually finds
“fitter” genes (the “words” of the language) and “fitter” ways of expressing them
through the switchboard (the “syntax” of the language), where “fitter” means an
effective fitness that also measures evolutionary robustness. In Table 1 we give
a description of the algorithmic language that emerged after 1000 generations.

One may be surprised that the system based itself on (+X(+X(+X(+X 0)))),
which actually uses more expressed codons - 9 - than the minimal solution
(+X(+X(+X X))), which uses only 7 and therefore might be surmised to be
more evolutionarily robust. The answer is, of course, that because the first so-
lution uses a repeated building block - +X + X - this block may be expressed
twice. In this case the effective number of codons that are subject to muta-
tional damage of (+X(+X(+X(+X 0)))) is only 5 compared to the 7 used by
(+X(+X(+X X))).

We have discussed the evolution of robustness and believe that the above
description of the results of the experiment offers unequivocal evidence for it.
However, one can determine more rigorous and quantitative measures. If one can
think of one optimal solution as being more robust than another then this should
imply that the more robust state’s “neighbours” are on average fitter, where the
notion of neighbour depends on the operator we are thinking of robustness with
respect to; for mutation, it is natural to use Hamming distance as a measure of
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Table 1. Description of the algorithmic language that has emerged by generation 1000

Fig. 4. Average fitness of 1-point mutants of perfect individuals, and of 1-point mutants
of each perfect individual’s switchboard

neighbourhood. To this end, for every optimal solution we consider the average
fitness of its 96 one-mutant neighbours. In Fig. 4 we see a graph of this quantity
as a function of time. The key observation is: upon discovery of the solution
(+X(+X(+X(+X 0)))) at generation 704, the system now has a solution that
uses in the genotype only five distinct codons, other than the switchboard gene,
whereas the previous solution, based on + + +X, used 9 distinct codons. This
implies that, as the + + +X solution has (32 − 13) = 19 non-expressed codons,
the +X + X-based solution, which uses 4 less should have 4/19 ∼ 20% more
optimal one-mutant neighbours which is roughly the increase seen in Fig 4.

The evolution of robustness is even more pronounced if we examine the fit-
ness of the one-mutant neigbours of optimal solutions where we consider only
the switchboard gene, i.e. only 12 neighbours. Fig 4 also shows the temporal evo-
lution of the average fitness of the one-mutant neighbours of the switchboard.
We have also examined the evolution of the ratio of one-point mutants of both
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the entire genotype and the switchboard that generate optimal and valid solu-
tions respectively. The behaviour is similar to that for fitness, showing marked
increases when a more robust solution is found. Naturally, in the case of the
switchboard, due to the important role this gene plays in generating the syntax,
and the lack of neutral mutations due to the fact that all four codons are used to
activate other genes, one notes that the average fitness of the one-mutant neigh-
bours is small. This is a sign that the switchboard is more brittle than many
of the other genes. However, even in the case where the optimal solution uses 4
expressed genes, there is still some degree of robustness. As the average number
of optimal mutants can be as high as 13% this means that up to 2 switchboard
codons could be mutated and still leave an optimal individual. After generation
704 the new class of optimal solution uses only three activated genes hence the
fourth codon on the switchboard loses its importance. Therefore a minimum of
25% of the one-mutant neighbours should be optimal. However, it was observed
that 27 − 28% is the norm and hence, the system had evolved robustness above
and beyond just finding a solution that uses fewer expressed codons.

While our conclusions thus far have been gleaned from an examination of
a single (though representative) run, all our experiences with other runs sug-
gested that the phenomena we observed are common across a large number of
runs. It is however legitimate to ask what happens over those runs. The problem
with this is that many of the observed phenomena are contingent: the switch-
board structure, and subtleties such as genetic reserve, will look quite different
in different runs. Two basic related phenomena associated with robustness that
can be seen over many runs are: the tendency to activate more than once the
same gene - especially the core gene - and a tendency to use fewer expressed
genes. In fact, solutions that use two expressed genes occured considerably more
frequently than three-gene solutions, (typically 10-15 times more often) while
four-gene solutions are rare indeed. This tendency is the equivalent of the more
familiar phenomena of bloat in standard GP. In both case there is a tendency
for the system to reach a state where the ratio of coding material to non-coding
material is minimized. In GP this is achieved mainly by increasing the amount
of non-coding material while here is it by minimizing the amount of coding ma-
terial. Obviously, the payoff is enhanced evolutionary robustness via resistance
to mutational damage.

4 Conclusions

In this paper we investigated how the existence of a degenerate GPM can lead
to the evolution of robustness and the emergence of an algorithmic language as
a result of the self-organization of the GPM.

In distinction to previous work, we concentrated on an in depth analysis of
a single run, to give an idea of the tremendous subtlety and complexity of the
phenomena that can occur, even in this simple scenario. We saw that the manner
in which the system can build robustness can be very varied, from simply devel-
oping solutions that require fewer expressed genes, to influencing the content of
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non-coding parts of the genome and the pattern of gene expression, such as the
creation of genetic reserves. We saw and quantified a tendency to reduce the size
of the effective coding region - a phenomena analogous to bloat in GP. We saw
that robustness can evolve both continuously and in a more punctuated manner,
as when passing between solutions with different numbers of expressed genes.

Our study was motivated by a desire to offer a phenomenological predictive
framework and description of the evolution of robustness in the context of a
genetic model with some language-like features. There exists a formal mathe-
matical framework in which to describe these phenomena - induced symmetry
breaking of the genotype-phenotype map and effective fitness as a quantitative
measure of this fitness [5]. We will return to a description within this framework
at a later date. We believe that further studies of our model and framework will
lead to a much deeper understanding of the phenomena of bloat, as well as help
in the design of better genetic operators and therefore more competent EAs.
A further motivation is that of [3] - to understand the origins and evolution of
language.
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